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CHAPTER I

INTRODUCT ION

In the ground maneuvering of aircraft equipped with

swiveling landing gears, there sometimes arises the problem

of violent oscillations or shimmy of £he landing gear which

may lead to failure of the gear. In the past this problem

has been handled largely by the empirical procedure of

equipping landing gears with supplementary shimmy dampers

whose sizes have been controlled largely by practlcal expe-

rience. However, this empirical type of approach has not

proved entirely satisfactory as is evidenced by occasional

difficulties which are experienced with wheel shimmy.

Moreover, for radically different types of complex flexible

landing gears it is highly doubtful whether any empirical

approach based purely on past experience could always safely

and optimally take into account all of the possible con-

ditions which a landing gear might be subjected to in actual

operation. _

Historical Background

O

Because of these considerations a considerable amount

of theoretical and experimental work on wheel shimmy has

been done, mostly in the past 2 5 years. The historical

Z
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background of this work, as taken in part from a paper by

Dengler, Goland, and Herrman I may be briefly described as

follows. Wheel shimmy first arose as a problem in automo-

biles around the year 1920 and from that time until the

mldthlrtles a considerable amount of research was devoted to

this automobile problem. Much of thls early research was

concerned with factors peculiar to the automobile problem

and is not directly applicable to the aircraft problem which

is of primary concern In the present investigation. However,

two important fundamental contributions to an understanding

of the general wheel shimmy problem were made In this period

by Broulhiet 2 In France In 1925 and by Fromm5 in Germany

several years later. These two investigators were apparently

the first ones to recognize the importance of tire lateral

flexibility and cornering power as primary factors influen-

cing the occurrence of wheel shimmy.

In the mldthlrtles the aircraft wheel shimmy problem

became of importance and most of the subsequent literature

I
Max Dengler, Martin Goland, and Georg Herrman,

"A Bibliographic Survey of Automobile and Aircraft Wheel

Shimmy," WADC Technical Report 52-141 , 1951, 1_2 pp.

2
M. G. Broulhlet, "La Suspension de la Direction de

la Volture Automobile, Shimmy et Dandlnement," Bull. Soc.

Lug. Civ., Vol. 78, July 1925, Pp. 5h0-55_.

5 H. Fromm, "Kurzer Berlchte uber dle Geschlchte des

Theorle des Radflatterns," Berlchte 1½0 der Lillenthal-
Gesellschaft, 1941, Pp. 55-58.
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on wheel shimmy is concerned with the aircraft problem. At

the beginning of this period, a number of significant con-

tributions were made by Schlippe and Dietrich,4,5,6 Melzer,7

and Maier 8 in Germany, Greidanus9 in the Netherlands,

Kantrowitz I0 and Wylie II in the United States, and Temple 12

and Taylorl5 in England. These various investigators each

4 B. von Schlippe and R. Dietrich, "Das Flattern

elnes bepneuten Rades," Berichte _ der Lilienthal-
Gesellschaft, 1941, Pp. 35-45, 65-66.--

5 B. yon Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, ZWB Special Publication, 19_2,-_ p-p. -----

6
B. yon Schlippe and R. Dietrich, "Das Flattern eines

" ZWB Technische Berichte,mit Luftreifen versehenen Rades,
Vol. ll, No. 2, 19_A, Pp. 1-16. --

7 M. Melzer, "Beitrag zur Theorie des Spornradflatterns"

ZWB Technische Berichte, Vol. 7, No. 2, 1940, Pp. 59-70.

8 E. Maler, "Theoretische Untersuchungen _ber die

Stabilitat yon Flugzeugfahrwerken, __ZWB __FB__,1166 1940, 59 PP.

9 j. H. Greidanus, "Control and Stability of the Nose-

Wheel Landing Gear," Report V 1038, Netherlands National
Aeronautical Resesmch __t_te,_942 , 27 pp.

I0 Arthur Kantrowitz, "Stability of Casterin_ Wheels

for Aircraft Landing Gears," NACA Technical Report686,
1940, 16 pp. ......... --

ii
Jean Wylie, "Dynamic Problems of the Tricycle

Alighting Gear," Journal of the Aeronautical Sciences, Vol. 7,
No. 2, Dec. 1959, Pp. 61-_.'--"

12 G. Temple, "Preliminary Report on the Theory of

Shimmy in Aeroplane Nose Wheels and Tail Wheels," RAE
No. AO 1940, ppo

13 j. Lockwoo_ Taylor, "Oscillation of Castoring

Wheels," Aircraft Engineering, Vol. 15, No. I_3, Jan. 19_i,
p. 15.



developed at least slightly different theories of tire

motion and wheel shimmy, most of which take tire elasticity

into account in different ways. Also experimental contribu-

tions were furnished by most of these investigators and also

by Dietz and Harling 14 and Schrode. 15 However, as yet, no

thorough evaluation has been made of these various theories

and data to determine the absolute and relative merits of

the the or ie s.

The major recent contributions to the wheel shimmy

problem are the work of Rotta, 16 Bourcier de Carbon, 17 and

Moreland. 18,19 Rotta slightly extended the most advanced

earlier theory, developed by Schlippe and Dietrich, and made

e_

O. Dietz and R. Harling, "Experimentelle

Untersuchungen "uber das Spornradflattern," ZWB FB 1320,
19_0, 101 pp.

15 H. Schrode, "Verminderung der Flatterneigung yon

Sporn- und Bugwerken dutch Einbau besonders geformter Reifen,"

ZWB Technlsche Berichte, Vol. 10, No. 4, April 1943, PP. ll3-
Tl-g.

16 j. Rotta, "Properties of the Aeroplane During Take-

Off and Alighting," Part l: Reports and Translations No. 969,

Dec. 1947, _3 PP; Part 2: Reports an_--_ranslations No_-'97 ,_
Feb. 1948 , 85 pp., British Ministry-of _ --

17 Christian Bourcier de Carbon, "Etude t The_orique du

Shimmy des Roues d'Avion," Office National d'Etudes et de
/

Recherches Aeronautiques, PublicatTo-n No. 7, _9_--P_T.

18 William J. Moreland, "Landing-Gear Vibration,"

AF Technical _ No. 6___0, 1951, 70 pp.

19 William J. Moreland, "The Story of Shimmy," Journal

of the Aeronautical Sciences, Vol. 21, No. 12, Dec. 1954,
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a detailed study of many of the fundamental properties of

pneumatic tires which enter into the wheel shim:ny problem.

Bourcier de Carbon developed a theory of wheel shimmy much

llke the earlier theory of Greldanus which, although not of

so advanced a nature as the Schlippe-Dietrich or Rotta

theories, is perhaps the most complex existing theory which

would be acceptable to aircraft designers from practical

considerations. Bourcier de Carbon also pointed out some

of the limitations of the earlier theories of Kantrowitz

and Wylie. Moreland has advanced the idea that it may be

more important for many shimmy problems to take into account

landing gear structural elasticity rather than to take tire

elasticity into account in great detail and he has developed

several versions of a simplified tire motion theory.

Purpose of the Present Investigation

It is evident from the preceeding historical back-

ground that there exist in the literature a large number of

theoretical and experimental papers dealing with the subject

of wheel shimmy. However, most of these theoretical papers

have not been correlated with each other or with the avail-
i

able experimental data)s_ that consequently there exist at
f

present a large number rof at least superficially different

theories of wheel shimmy and a fair amount of experimental
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data which have not been correlated with many of these

theories. The primary purpose of the present investigation

is to clear up this partial confusion of theories by demon-

strating that most of the previously published theories

represent various approximations to one basic general

linearized theory derived herein and that most of the pre-

viously published linearlzed theories which do not represent

approximations to this general theory possess certain unde-

sirable characteristics. This basic general theory, which

is henceforth called the summary theory, is derived in such

a manner that it makes use of and is compatible with the

soundest features of practically all of the previously pub-

lished theories, insomuch as this is possible at present;

however, for the main part, this summary theory is a minor

modification of the theory proposed by Schllppe and

Dietrich 20,21,22

A second purpose of this paper is to develop a series

of systematic approximations to the summary theory suitable

for use in the treatment of probleTms _ too simple to merit the

use of the complete summary theory a_d to assess both these

systematic approximations and t_e p_evlously published

2O
B. yon Schlippe and R. Dietrich, "Das Flattern eines

N

bepneuten Rades, op. cit.

21
B. von Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, op. cit. _ --

22 B. yon Schlippe and R. Dietrich, "Das Flattern

" op. citeines mit Luftreifen versehenen Rades,
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theories both with respect to how these theories are related

.o ho.
of these theories a_with'// the experimental data available.

Statement of the Problem Considered and

the General Approach Thereto

i

_O

i

i

!

@

The purpose of the next section of this chapter is to

specifically define the problem considered in this thesis and

to clarify in detail the correlation between the various parts

of the thesis which deal with different aspects of this same

problem.

The basic problem to be considered herein is the

rolling motion and wheel shimmy of a rigid wheel equipped

with an elastic tire where the wheel is attached to some

supporting structure such as a landing gear strut. The

motion of the rigid wheel can, of course, be completely

described by six independent variables corresponding to the

three degrees of freedom in translation and rotation of the

wheel. In addition to these six degrees of freedom, there

exists a seventh degree of freedom which is associated with

the distortion of the elastic tire or the track of the tire

on the ground which results from the applicstion @f a given

motion to the rigid wheel. Thus, in general, the motion of a

rigid wheel with an elastic tire represents a system of

motion involving seven variables and consequently to solve
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for the motion of a landing gear under arbitrary rolling

conditions, seven equations correlating these different

variables are required. Six of these equations will usually

be the equations expressing the sum of the forces or moments

acting along each of the three principal coordinate axes;

the seventh relation will be an equation, usually a kinematic

equation, which correlates the tire distortion with the other

var iable s.

The present paper will not be concerned with all of

these seven degrees of freedom. Specifically, the major

part of this paper will be restricted to a consideration of

cases of wheel motion where the wheel is rolling at an

approximately constant velocity v without braking and con-

sequently with constant angular velocity w and where no

strong vertical oscillations are involved. Thus, for exam-

ple, effects of acceleration or deceleration, which are

known to have at least some influence on the rolling motion,23

are not considered. Similarly fore and aft oscillations of

the wheel are excluded.

With the above three restrictions, the seven variable

problem of a rolling wheel becomes reduced to the considera-

tion of a system involving the following four degrees of

freedom: (1) swiveling of the wheel about a vertical axis

through the wheel center point, designated by the symbol @;

23 H. Schrode,0_.2.cJ.!t.

z
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(2) lateral tilting of the wheel with respect to a vertical

plane parallel to the direction of undisturbed motion,

designated by the symbol T; (3) lateral displacement of the

wheel wlth respect to a reference space fixed axis parallel

to the direction of undisturbed motion, designated by the

symbol _; and (_) the lateral displacement of the tire

footprint on the ground (which is a measure of the tire

distortion), designated by the symbol YO" These coordinates

and their positive directions are shown in Figure I.

In order to obtain four equstlons correlating these

four variables, 9, Y, _ and YO, the following procedure is

followed in the present paper. First of all, after some

remarks on general restrictions, a derivation is given in

Chapter II to establish a kinematic equation relating the

four variables. Then, in Chapter III, the primary forces

and moments acting on a rolling elastic wheel are discussed

and are used later in Chapter IV to establish the other

three equations.

After having established these general equations of

motion, it is recognized that for many applications these

equations in their most general form are relatively compli-

cated and, while they are not by any means Insoluable in this

general form, it is, however, profitable to simplify the

equations for those problems which do not require the detailed

equations of the summary theory. Therefore, a number of
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of systematic approximations to the summary theory are for-

mulated in Chapter V. A second reason for establishing

these systematic approximations lies in the fact that they

furnish a framework for comparing the summary theory with

the other existing theories of wheel motion, most of which

are closely related to these systematic approximations.

Such a comparison of the summary theory and its systematic

approximations with the existing theories of wheel motion

is carried out in Chapter VI.

In Chapter VII, which is the last major part of this

thesis, the application of the summary and approximate

theories to two cases of simplified types of landing gear

configurations is discussed. The first case is chosen pri-

marily to demonstrate the correlation between theory and

experiment and the second case to demonstrate the correla-

tion between the summary and systematic approximation

theories.

General Restrictions

Before entering upon the detailed derivation of the

equations of motion, some mention will be made here as to

some, as yet not discussed, restrictions on the analysis to

follow. First of all, the present paper is limited exclu-

sively to the subject of linearized theories. Some mention

should be made here, however, as to the question of whether
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a linearized theory is sufficient to describe the important

features of wheel shimmy. In regard to this question, it

appears at present that a linearized theory will provide at

least a fair qualitative description of shimmy behavior in

regard to the location of stability boundaries and to the

question as to whether a given motion is stable or not.

However, agreement between theory and experiment, to be

shown later in this paper, is still not good enough from a

quantitative point of view to warrant the conclusion that

nonlinear effects can always be neglected or replaced by

equivalent linear effects.

Another limitation of the linearized theory is that

it does not permit calculation of the maximum steady state

shimmy amplitude for those steady state self-excited shimmy

motions which sometimes occur on actual landing gears.

While the preceding considerations suggest that non-

linear effects in landing gear motions may possibly be of

importance for some practical problems, their consideration

will be considered beyond the scope of the present investi-

gation and henceforth only linearized theory is discussed.

Another restriction on the considerations of this

investigation rises in connection with the assumption adopted

throughout this paper that the finite width of a tire need

not be taken into account in developing a tire motion theory

for single tires of conventional cross section. This
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assumption appears at present to be at leaat partly Justi-

fied on the basis of the experiments of Schlippe and

Dietrich; 24 on the other hand, since their tests relevant to

this matter were extremely limited in scope, it is conceiv-

able that their experimental results may not be completely

typical. Consequently, perhaps it would be well if some

future attention were directed to a more thorough evaluation

of tire width effects. While this question will be consid-

ered beyond the scope of the present investigation, it is

noted that some theoretical work on this subject has been

already done by Schlippe and Dietrich25 and later by

Rotta .26

24 --

B. yon Schlippe and R. Dietrich, Zur Mechanik des
Luftreifens, op. ci___t.

25 rbid.

26 j. Rotta, op. cir.

d)



CHAPTER II

KINEMATIC RELATIONSHIPS FOR THE ROLLING TIRE

@

In this chapter, the kinematic equations for the

motion of a rolling tilted elastic tire without skidding

are derived in accordance with the theoretical analysis of

Schlippe and Dietrich.27 This derivation differs only

slightly from that analysis in that it omits some refine-

ments of the theory which are necessary for very wide tires

and it includes some influences of tilting of the tire in

more detail. It should be noted here, however, that the

modifications made in regard to tilt may not be necessarily

of any great practical importance for most problems; however,

since a few problems are conceivable where they may be of

interest, they are included.

Specificly, the object of this chapter is to obtain

a relation correlating the absolute lateral deflection of

the center point of the tire ground contact area YO with

the corresponding wheel coordinates of lateral deflection _,

swivel angle @ and tilt V. (These coordinates are illus-

trated in Figure i.) To attain this object, the following

procedure is used. First, some necessary geometrical rela-

tions are set down and some necessary background information

regarding tire distortion is discussed. Then this information

27 B. von Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, op. cit.
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is utilized to obtain a kinematic relation between the

lateral deflection of the tire center band or equator at

the leading edge of the ground contact area and the coordi-

nates _, 3' and @. Next a kinematic relation between the

lateral deflections of the equator at the center and leading

edge of the ground contact area Cdesignated by YO and Yl

respectively) is established and finally these two relations

are combined to obtain a basic kinematic equation correlating

YO with 13, y and @.

The derivation of these kinematic relations is based

upon the following physical concepts. As a tire moves for-

ward, the tire material on the circumference Just ahead of

the ground contact area is laid down or developed on the

ground without skidding with respect to the ground to become

the new leading portion of the ground contact area, so that

the track of the tire is completely determined by the lateral

distortion coordinate of the foremost ground contact point

Yl and the slope of the distorted centerline or equator of

the tire at that point.

Geometrical Relationships

G?

@

The primary geometrical quantities involved in the

problem of a rolling tire are shown in Figure I, which gives

an instantaneous view of a distorted tire with respect to an

arbitrary space-fixed XYZ coordinate system, the X-axis
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being parallel to the ground and approximately parallel to

the direction of wheel motion, the Z-axls being perpendicular

to the ground, and the Y-axis being perpendicular to the X-

and Z-axes. Parts (a) and (b) of this Figure represent side

and bottom views, respectively, for a rolling wheel under

swiveled tilted conditions. For the sake of clarity, part (c)

of this Figure, which shows an end view of the rolling tire,

has been drawn to a different scale from part (b) of this

Figure and also has been drawn for the unswiveled condition

only. In discussing the geometrical quantities in this

Pigure, the following terminology and symbols are used. By

the wheel center plane is meant the plane of symmetry of the

wheel perpendicular to the wheel axle. By the tire center-

llne or equator is meant the tire points which on the undis-

torted tire are located at the intersection of the tire outer

circumference with the wheel center plane; under the action

of moments and lateral forces these tire points are deflected

laterally by an amount _ with respect to the wheel center

plane. The symbol _i designates the lateral deflection of

tire equator points which are not in contact with the ground

and _ designates the lateral deflection of points which
g

are in contact with the ground. The particular ground con-

tact point at the center of the ground contact area is

designated by 0"
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The lateral distance of the wheel plane from an

arbitrary space-fixed XZ plane is designated a8 71i for

points off the ground at a vertical height z and as _Ig

for points on the ground. The lateral distance of tire

equator points from this XZ-plane are similarly designated

as Yl and yg, respectively. The difference between y

and _ is the tire lateral distortion _ or

and

hi = Yi -_i (2 .l)

=

yg - (2.2)

The tire contacts the ground in a finite area having

a length which is designated as 2h. The width of this area

is assumed to be negligible small, that is, the ground con-

tact area is assumed to be reduced to a ground contact line.

The foremost ground contact point (in the direction of

motion) is designated by the subscript 1, the rearmost

point by the subscript 2 and the center point by the sub-

script 0 . Except for braking and accelerating effects,

the center point 0 has approximately the same horizontal

X coordinate as that of the wheel axle.
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Distances about the tire equator or circumference

are measured in terms of the circumferential coordinate s

whose orIEin is taken at tDs point O.

The wheel is assumed to move at constant velocity v

approximately in the direction of the X-axls. The wheel is

laterally inclined with respect to a vertical Z-axls by the

tilt angle I" and is swiveled with respect to the XZ-plane

by the swivel angle @. Both tilt and swivel angles are

assumed to be small, that is, cos @ _ cos 7Z i, sin %, = T

and sin @ = 9.

The center point of the wheel axle is located

vertically at a distance r_ from the XY ground plane and

is laterally located with respect to the ground contact

intersection of the wheel plane by a distance r_y or with

respect to the XZ-plane by _3 where

Tire Distortion

(2.9)

In this section a short discussion is given of ths

features of tire distortion which are pertinent to the deriv-

ative of the basic kinematic relations of this paper.

Experimental and theoretical considerations, such as

have been given by Schlippe and Dietrich 28 and

2_
B. von Schlippe and R. Dietrich, Ibid.
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Rotta,29 respectively, indicate that if the tire equator in

the ground contact region of a tire is subjected to arbi-

trary lateral distortion, then the lateral distortion of the

tire equator off the ground _i tends to die out as an

exponentially decaying function of the circumferential dis-

placement s (for example, see Figure 2(a)). Thus near

tire point 1 off the ground the tire distortion tends to

approach the pattern described by the equation

s -h

Xi = _i e _ (2.41

@
c@

e_

J

and a similar equation applies near tire point 2. The

exponential constant L is a tire characteristic having the

dimension of a length and is called the relaxation length.

It is noted that the value of relaxation length near point 2

is not necessarily exactly the same as that near point l;

however, since the former relaxation length is not used in

this paper in any critical calculations, there is no point

in taking into account the difference.

In regard to the accuracy of equation (2.4) very near

to point I, it should be emphasized that this exponential

variation is only an expression of the equilibrium condition

29
J. Rotta, op. ci___t.
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which the tire equator distortion would reach in the absence

of any restraints. In actuality, it is obvious that there

exist conditions where this distortion curve cannot be

completely exponential in form. For example, for the case

of pure lateral deflection of a stationary tire, the tire

equator in the ground contact zone is (neglecting skidding)

a straight line parallel to the wheel center plane and

extending from point 1 to point 2. (See solid line outline

in Figure 2(b).) Consequently, the existence of an exponen-

tial curve Just to the right of point I, and including point

i, would imply the existence of a sharp bend in the tire at

point 1 such as is indicated in Figure 2(a). However, since

a sharp bend is impossible because of finite tire stiffness,

it follows that on a stationary tire in general the exponen-

tial variation given by equation (2.4) cannot be valid very

close to point i. However, experimental evidence does indi-

cate that beyond a short transition region ahead of point 1

the tire equation distortion curve does have an essentially

exponential character (see solid line outline in Figure 2(b)).

_As the wheel rolls ahead the nonexponential transition region

of the tire equator is laid down or developed on the ground

as it passes into the ground contact zone, and the more

nearly exponential part of the equator curve moves down

toward the ground (see dashed line outline in Figure 2(b))
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and is eventually developed on the ground, so that after

rolling a short distance from rest and during normal rolling

conditions (see Figure 2(c)) the tire equator distortion

at the front end of the tire can approach the assumed expo-

nential variation of equation (2._).

At the rear end of the tire, the equator distortion

curve during rolling does not so closely approximate an

exponential variation since at the rear end there is no pro-

cess of laying down or development such as is responsible

for the exponential variation at the front end. However,

since the rearward section of the tire equator is not used

in any critical calculation in this paper, it is, neverthe-

less, assumed hereafter for simplicity that this equator

curve is also exponential.

Now having given some reason for accepting equation

(2._) as the basic equation for tire equator lateral dis-

tortion near point 1 for rolling conditions, the total

lateral displacement of the tire from the XZ-plane In this

region can then from equation (2.1) be written in the form
_i:i i

s-h

Yl = Hi + _l e L (2.5)

z
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and substituting the geometrical relation

(see Figure i) gives

Hi --_g - zy

23

s-h

Yi = _g - zy +_i e" -I'- (2.6)

This equation will not be utilized to establish some basic

kinematic relations.

!1
@

@

_t
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The Kinematic Equation

By making use of the physical concepts discussed

earlier in this chapter together with equation (2.6), it is

now possible to establish as follows the basic differential

equation relating the tire deflection at the center of the

ground contact area Y0 with the wheel coordinates _, @

and T •

In the ground contact surface between tire and ground

there is assumed to be perfect adhesion, that is, no skidding.

As the tire rolls forward (arbitrarily swiveling, tilting

and moving laterally) by a distance dx a new element of

the tire of length ds above and in front of point 1 is

laid down or developed on the ground. This tire element,

before being laid down on the ground, had the lateral dis-

tortion variation given by equation (2.6). This equation,
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after differentiation with respect to s, yields for a

given instantaneous position of the tire the following rate

of change of distortion

k

s-h
dyi d_g dz i -K-

(2.7)

and at the point i where s = h and Yi = Yl

@

@
_L

i

i
|

1
(2.8)

(dz)
Consider the term 3"a I

This is simply the sine of the

angle between the ground and the tire equator at point 1

(see Figure i). Just to the left of point I the tire is

flattened on the ground or d__z= 0.
ds dz) were dif-zf d'_ i

ferent from zero this would then imply a sharp bend in the

i:._:i : _ -

tire at point i. However, because of the finite bending

stiffness of an actual tire a sharp bend is impossible; thus

(dz) = 0 and equation (2.8) reduces to the relation

(2.9)
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since (dw-j_ = O, s is a horizontal coordinateFurther,
1

near point i. The rate of change of wheel lateral displace-

ment _g with respect to the horizontal coordinate at any

given instant is Just the swivel angle @, hence it follows

that

1 = @ " ]__i (a.lO)

@

Ib

If the tire is assumed to have no sharp bend at point

1 (dYi/ds) 1 = (dyg/dS) 1 at this point. Then, since

(dyg/dS) 1 is the slope of the tire equator on the ground

at point 1 and since no slipping is assumed to exist, it

follows that this slope must coincide with the track of the

rolling tire on the ground which is dYl/dX. Thus

i °

dYl
-_--=e-_A I

or designating differentiation with respect to

d
operator D = S_ and rearranging

LDy I = L@ - h I

x by the

(2.11)
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r Y = 713 + _I 9 + (r3 -r_-_ -)Y

= (i + _i D + _2 D2 + .

( " /= I + _--_n Dn Y0
n=l

• • )Yo

= (i + LD)ehDy 0
o

hv-lDt

= (1 + Lv'lD t)e Y0 (2.20)

where

@

_l=L+h

_2 = (2L + h)h/2

_n = (nL + h)hn-I/n '

!
Equation (2.20) furnishes several alternate forms of the

basic kinematic equation _2.16) which are useful in later

chapters.
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In this chapter the primary forces and moments acting

on a rolling wheel are discussed and where possible equations

are set down for these quantities. These equations are

utilized in Chapter III together with the preceding kinema-

tic equation to establish the equations of motion for a

rolling wheel.

Throughout this discussion all forces along the

coordinate axes are considered positive if they tend to move

the wheel in the direction of the positive coordinate axes;

all moments about the coordinate axes X, Y or Z or other

parallel axes are considered positive if they tend to produce

wheel rotation from the positive Y-axis toward the positive

Z-axis, from the positive Z-axis toward the positive X-axis

or from the positive X-axis toward the positive Y-axis,

respectively.

Lateral Elastic Force

First consider the lateral elasticity properties of a

tire. If a static untilted tire is laterally deflected at

its base with respect to its rim by a lateral Fyk it pro-

duces an equal spring reaction force roughly proportional to

the mean lateral distortion k mean or, inversely, a lateral

32



0

55

tire distortion _mean creates a proportional ground force

Fy_. If the lateral distortion of the center of the ground

contact line k0 is taken as the mean distortion then the

elastic ground force is

Fy_ = K_ o = K_(y o - _0) = K_(Yo " _3 " r3Y) (5.1)

@

where K_ is the tire lateral spring constant or side stiff-

ness. This relation is used in most papers. However,

Schlippe and Dietrich33 Rotta3_ do use a slightly different

expression. These investigators take the tire mean lateral

distortion equal to the average of the distortion at the

leading and trailing edge points of the ground contact area

(points 1 and 2) and thus obtain the equation

@
_ 1

Fy A - _- K (_I + k2 ) (3.2)

instead of equation (3.1). The true equation for Fyk is

probably more complicated than either of these two equations;

however, since no plausible means of obtaining a better

equation is available it appears advisable to select one of

the above equations for use in this paper. Although it is

33
B. yon Schlippe and R. Dietrich, "Das Flattern einee

n
bepneuten Rade s, op. c it.

3&
J. Rotta, op. ci___tt.
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possible that equation (3.2) may be slightly the better

equation for a few special cases of wheel motion, equation

(3.1) is much simpler to work with and in the majority of

cases of wheel motion it makes little difference which of

the two equations is used. Therefore, for the sake of

simplicity, equation {3.1) is adopted hereafter in the

analysis of this paper as the basic equation for the lateral

force on a wheel due to tire lateral deformation.

Torsional Elastic Moment

Consider next the torsional elasticity properties of

a tire. If a tire is twisted on the ground about a vertical

axis by an angle a there arises a restoring ground moment

roughly linearly proportional to the twist or

Mza = Kaa (3.3)

e

-i

41+

The tire twist is equal to the mean angle between the track

of the tire on the ground and the wheel plane; that is,

a = DYmean - @. Taking the mean value of DYmean as Dy 0

gives

: - (3.4]
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so that

Mza = Ka(Dy 0 - @) = Ka(V-iDtY0 - @)

35

(3.5)

Most investigators of tire motion have used this relation.

However, Schllppe and Dietrlch 35 and Rotta 36 instead take

the mean angle equal to (A1 -A2 )/2h and thus obtain the

moment equation

Mza = 2--h (_l - _2) (3.6)

@

I#

which leads to relatively more complicated equations of

motion than does equation _5.5). However, there is no

strong reason for believing equation (3.6) to be a slgnlfi-

cant improvement over the simpler equation (3.5)- There-

fore, in the analysis of this paper, the simpler equation is

used.

It is noted that Melzer37 has used the less accurate

relation that the moment due to tire twist is

Mza - -Ka_ (5.7)

55 B. yon Schllppe and R. Dietrich, "Das Flattern

" 0_2. citelnes bepneuten Rades,

36 j. Rotta, op. clt.

37 M. Melzer, oA. ci_!A.
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which i_plies the relation @ > >Dy 0 (see equation (3.5))

which is, however, not true in all practical cases. Conse-

quently, in regard to this point Melzer's theory should be

viewed with some caution.

Tilt Elastic Force

Rotta38 has shown that if a tire is tilted from the

vertical Z-axis by an angle y without lateral distortion

of the equator (_0 = 0) there arises a restoring ground

lateral force approximately linearly proportional to the

tilt angle or

Fyy = -KyT (3.8)

where K T is the constant of proportionality. Most authors

(excepting Rotta) have not considered the effects of this

force term although they have considered other effects of

°the same order of magnitude.

Vertical Load Center of Pressure

Under some circumstances the vertical load F z

influences the wheel motion. To consider this influence, it

is necessary to know the locations of the center of pressure

38
J. Rotta, op. cir.
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of this force. In the XZ-plane (Figure I) this center of

pressure lies approximately below the wheel axle in line with

the point 0. In the YZ-plane the center of pressure is

shifted laterally from the intersection of wheel plane and

ground O0 as a result of lateral distortion RO and tilt

y. As a first approximation this shift may be taken as

linearly dependent on RO and 7 so that the lateral center

of pressure distance c from the XZ-plane becomes

c = O0 + C_Ro - cTY

= cry 0 + (I - c_)_I 0 - c77

= C_Yo + (I- c_)_13 + E( I -c_)r 3 - c7_7 (3.9)

where c_ and c 7 are constants.

are chosen such that c A and c 7

(The signs of the terms

are positive numbers.)

Gyroscopic Moment Due to Tire Distortion

Consider next how a gyroscopic moment can arise in

the case of a rolling untilted wheel with lateral distortion

of the tire at the ground (Figure 3). While the solid rim

and axle parts of the wheel are untilted,the elastic tire,

due to the lateral deformation, is, on the average, tilted

with respect to the wheel center plane by an amount
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0Vl is a

I"_ - r + r 3 where r is the tire radius and v 1

correction factor which indicates the effective fraction of

the total tire mass which is tilted at this angle.

Kentrowltz,39 who was apparently the only investigator to

consider this at least theoretically interesting factor, has

suggested that Vl_ 1/2. This tilting action produces an

Dt_oV 1
w

angular velocity DtT _ r + r 3 where D t indicates

differentiation with respect to time. This angular velocity

together with the rotational velocity of the tire w pro-

duces a gyroscopic moment about the Z-axis of magnitude

Mzk = -Iyt_DtY k
(5.1o)

• p

,.z where Iy t is the moment of inertia of the tire (excluding

the solid rim and axle) about the wheel axle. By using

equation (2.18) this equation can also be expressed in the

form

Mz k = .iytV2 w_v D1"k
(5.11)

!

where the ratio v/_ is, to a good enough approximation

for this secondary term, equal to the tire radius r.

39
Arthur Kantrowitz, op. ci___tt.



,j

Then substltut ing for

gives

y_ and w/v in equation (3.11)

_IIy tv2 Dk 0
Mz_ = " r(r + r3)

_0

or abbreviating for later convenience and expressing the

result in several alterr_ate useful forms

Mzk = _mv2DA 0 = -vv2D(y 0 - _0 ) = -VvDt(Y 0

where

T IIyt
T = (3.13)

r(r + r5)

Another method for deriving an expression for T

cussed in a later section.

is dis-

Gyroscopic Moment Due to. Wheel Tilting

If the entire wheel structure tilts at an angular

velocity DtY then there arises another gyroscopic moment

of magnitude

Mz 7 = "Iy_ Dt y • - IywVD tY/r
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in addition to the term of equation (3.12). Here ly w is

the total polar moment of inertia of the wheel (Includlng

the tire) about its axle.

Gyroscopic Moment Due to Wheel Swiveling

If the wheel swivels at an angular velocity Dr@

then there also arises a tilting gyroscopic moment of mag-

nitude

Mx@ = -IywWDt@ = -IywVDt@/r (5.15)

8

Tire Inertia Forces and Moments

This section is concerned with an examination of the

influence of tire inertia forces and moments on a wheel

rolling at high speeds. Two types of such inertia effects

will be evaluated now in separate subsections. First,

inertia forces and moments associated with lateral distortion

and twisting of the tire will be evaluated and second,

centrifugal forces and moments will be evaluated. Then the

overall effects of these two inertia type forces and moments

will be considered together in a separate subsection.

Inertia forces and moments due to lateral tire

distortion.- At high rolling or shimmy velocities tire iner-

tia forces and moments arise which are proportional to the
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relative accelerations of the different parts of the tire

(including the previously discussed gyroscopic moment due

to tire lateral distortion). A rough estimate of these

forces and moments can be made as follows. It is assumed

that a fraction one-third of the total mass of the tire m t

is located on the periphery of the tire and is subjected to

the same accelerations with respect to the wheel hub as are

tire particles on the equator line, the remaining tire mass

being assumed substantially undisturbed. The "active" mass

of the tire per unit circumferential length is then mt/6_r.

The lateral acceleration of tire particles on the right hand

side of the tire off the ground in Figure l(a) will be con-

sidered first. The tire lateral distortion for this region

is given by equation (2.4). The lateral relative velocity

of a tire particle, obtained by differentiating this quantity

with respect to time is

s-h

DtA i = (DtA 1 - AiDts/L)e- --L--

The quantity Dts , which represents the peripheral velocity

of tire particles with respect to the wheel axle is approxi-

mately equal to the negative of the rolling velocity v so

¢



that the velocity expression becomes
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Dt_ i = (Dtk I

s-h
m -i-+ V l/L)e

Differentiation of this result to give the tire particle

relative acceleration yields the result

Dt2Ai = (Dt2kl + 2vDtkl/L + V2kl/L2)e

s-h

L

The corresponding inertia force for this part of the tire

is obtained by integrating this acceleration times the

active mass per unit length. This gives the force term

m t f s_ 1_r
Dt2Aids and evaluation of this integral, after

s=h

replacing the upper limit by infinity for simplification of

the result (which introduces no significant error because of

the rapidly decaying exponential function in Dt2_i ), yields

the re sult

mtL

&F : - _-_ (Ot2_l + 2vDtkl/L + v2_A1/L 2) (3.16)

The corresponding inertia moment term AM is given by

mt _s_ _r

-'6-_Js= h r sin @ Dt2_Ids where r sin _ is the moment arm
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(see Figure .i) and s is related to @

= sin -1 h/r
s - h = r(? - @l ) and @l

integral may be written in terms of @

by the relatlon

so that the moment

in the form

AM =
mt f@w r sin ? (Dt2_l + 2vDt_I/L + v2_i/L2)e

1

L rd@

The evaluation of this integral, after replacing the upper

limit by infinity (which introduces no appreciable error),

then yields the expression

4D

AM = -

mtrL(h + L _I - h2/r 2)

6w(L 2 + r2)

(Dt2RI + 2vDt_I/L + v2RI/L 2)

(3.17)

In a similar manner, for tire particles off the

ground on the left hand side of the tire in Figure l(a) the

following expressions are obtained for the inertia force and

momen t.

mtL

AF = - _ (Dt2R 2 - 2vDtk2/L + v2_2/L2) (3.18)

AM =

mtrL(h + L_I -h2/r 2)

6w(L 2 + r2)

(Dt2R 2 - 2vDtR2/L + v2R2/L 2)

(5.19)

=
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In these two expressions it has been assumed, for reasons

previously discussed, that the relaxation length L for

both ends of the tire is the same.

To obtain the inertia forces and moments for tire

particles in the ground contact area it is recognized that

for practically all cases where inertia forces are important

the ground contact line is close to a straight line so that

the lateral distortion for tire particles in this region can

be expressed fairly well by the equation

g_

=_ + s_
g 0

and the corresponding velocity and acceleration are

DtRg = DtR 0 + sDtm - va

Dt2kg = Dt2k0 + sDt2a - 2vDta

The total inertia force for this region is then

AF - ; S=hD.2_ gds

wrJ s=_ h

mth (Dt2k 0 - 2vDta) (3.2o)



and the inertia moment is

_ mt f s=h

AM _j s:.hSOt2kgdS

= -mth3Dt2a/9wr

_6

(3.21)

O

The total inertia force Fy i obtained by summing up

the force terms in equations (3.16), (3.18) and (3.20) can

be stated conveniently in terms of _0 and a by using the

relations kl + k2 = 2_0 and kl = k2 = 2ha which are

valid for a substantially straight ground contact llne.

This gives the result

= mt ( + v_ 01t)Fyi 3wr llDt2_0 (3.22)

where _I = L + h, and similarly for the total inertia

moment Mz i

r(h + L_l - h2/r 2

r

(2vDt_ 0 + hv2a/L)

÷

(3.231

@

n
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To partly evaluate the significance of these inertia

expressions consider first the inertia force for sinusoidal

oscillations such that _0 = _0m sin wt and therefore

Dt2_0 = -_2_ 0 so that equation (3.22) may be restated as

mt lW2Fyl = "---- (v2/L " _ )_0 (3"241

@

In order to interpret the significance of the inertia

force, it is noted that the important tire force quantity

which is of importance for the subsequent analysis is the

net tire force Fy n acting on the wheel which is equal to

the sum of the ground force

Fy i or

.r

FyR and the inertia force

Fy n = FyR + Fy i (3.25)

Next, consider how the inertia force modifies the ground
P

force FyR which was previously set equal to K_R 0 for the

case of a static tire (see equation (3.1)). In the dynamic

case, the relation between ground force and lateral tire

distortion may be modified by the inertia effect. As a first

approximation for this modification effect it is assumed

hereafter that the modification of the ground force is pro-

portional to the inertia force or

I
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where _y is a number whose absolute value will be less

than unity if the modification of the ground force due to

the inertia force is less than the inertia force itself.

After combining equations (3.21_), (3.25) and (3.26)

the following equation for the net tire force Fy n is

obt aine d.

Fyn = [KA- (i- _ly) mt3wr (v2/L - _ID2_ k0
(3.2?)

and from the form of this equation it can be seen that, in-

sofar as the ratio of net tire force to lateral deformation

is concerned, the effect of the inertia force can be con-

sidered equivalent to a change in tire lateral stiffness

dK_i equal to

L-

= -(I - _y) _ (v2/L - _l_2) (3.28)

Similarly from the inertia moment equation (3.23), it can be

concluded from an examination of the terms containing a

that part of the effect of this inertia moment is to change

the tire torsional stiffness by an amount AK a where

AK a = _ (1- + L -h2/r2) (v2/L

(3.29)
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and where _Iz is a number for the torsional stiffness sim-

ilar to _y for the lateral stiffness. The remaining

inertia moment term in equation (3.23) proportional to

DtXO, is simply the previously discussed gyroscopic moment

due to lateral tire distortion. By comparing this term with

the previously obtained equation (3.12), it is seen that the

coefficient T may be expressed by the equation

2mtr(h + L _l - h2/r 2)

(3.30)
T = 31,(L2+ r2 )

0
which usually gives approximately the same result as the

previously derived equation (3.13) with Kantrowltz's assump-

tlon of _l = 1/2. In regard to the question of in what

velocity range are the above tire stiffness changes impor-

tant, it is convenient to postpone such a discussion until

after a derivation of the effects of centrifugal forces has

been made.

Effects of centrlfugal forces.- Another inertia

effect which may become significant at high speeds is pro-

duced by the centrifugal forces acting on the individual

mass elements of the tire. The action of these centrifugal

forces appears to be to increase the tire stiffness as will

now be demonstrated by making use of a crude analysis which
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should give a qualitative idea of the size of this effe 9 i

but which should not be regarded as possessing any strong _/

quantitative merit.

For the purpose of this estimate, one-half of the

mass of the tire is assumed to be concentrated in the tire

sidewalls and the other half is assumed to be concentrated

on the tire periphery.

If the tire lateral and torsional stiffnesses K_

and K a be assumed to be directly proportional to the ten-

sion in the tire sidewalls, then there will be two sources

of tire stiffness, namely, inflation pressure, which pro-

duces a sidewall tension approximately equal to wp per

unit circumferential distance, (where w is the tire width)

and centrifugal force, which produces the sidewall tension

1 mt v2
corresponding to the peripheral tire mass

1/2 mt. Thus the tire lateral stiffnes_ may be expressed in

the form

KA ~ 4_r2wp + mtv2

&s

or equivalently as
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g_
K_ = Ekstati c ( 1 _wr2wp !

= K_stati °

mtv2Kk static
+

51

It appears from this equation that the influence of centrif-

ugal force is to increase the tire lateral stiffness by an

amount AK k whereJ

mtv2KR static

AK_j = (3.31)
_wr2wp

and similarly for the torsional stiffness

m tv2Ke

AK_j = (3.32)_r2wp

Significance of tire inertia effects with respect to

tire stiffness.-The significance of the two :Just discussed':
A t J

tire inertia effects on the tire stiffness will now be con-

sidered.

First, for the lateral stiffness, the effective change

, Kk from its static value AKk is obtained by adding the two
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increments according to equations (3.28) and (3.31), which

gives the following equation for the effective overall

change in tire lateral stiffness as a function of rolling

speed and shimmy frequency

(i - _[)mt_l D2 (i - _y)mtv2 + mtvrK_

AK_ = 3Trr - 3wrL _wr2wp
(3.33)

The first term involving the shimmy frequency appears to be

small enough in comparison with K_ such that it can prob-

ably be neglected for most practical conditions. The last

two terms have opposite signs if _y ( 1 and thus may

represent two partly counterbalancing effects. The second

term arose from the previous considerations of the lateral

acceleration of tire particles and is seen to effectively

tend to reduce tire lateral stiffness with increasing rolling

velocity if _ly < 1. The last term arose from the previous

considerations of centrifugal forces and is seen to effec-

tively tend to increase tire lateral stiffness. These last

two terms indicate that at high rolling speeds, if _ly < i,

the tire stiffness may either _rastlcly\decrease or increase,
"\ /
_L JJ

depending on which of the two terms is larger. However,

both of these terms happen to be of the same order of magni-

tude and the derivations of both terms were based on too
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crude concepts to Justify conclusions regarding which term

is larger. Thus, the only conclusion that can be drawn is

that at sufficiently high rolling speeds, drastic changes in

tire lateral stiffness may occur. Whether the stiffness

increases or decreases can probably be settled only by

e xpe r iment.

To give some quantitative measure of the velocity at

which these inertia effects become of significance, some

calculations were made to determine the velocity at which

the magnitude of the second term in equation (3.33) becomes

equal to K_. By making use of Horne's static tire data for

several modern aircraft tires,_ 0 it was found that this

velocity averaged approximately 400 _ fps _ 270 _'_ mph

where r is expressed in feet. Similar estimates for the

velocity at which the third term in equation (3-33) becomes

equal to K_ indicated approximately this same velocity.

Moreover, since this velocity is relatively high compared

with normal present day landing speeds, it appears that the

inertia effects on tire lateral stiffness considered here can

probably, as a rule, be neglected.

For the torsional stiffness of a tire, the overall

effective change in torsional stiffness AK a due to tire

- 40 Walter B. Horne, "Static Force-Deflection

Characteristics of Six Aircraft Tires Under Combined Loading,"
NACA TN 2926, 1953, 92 pp.



inertia and centrifugal forces is obtained by adding the

two increments according to equations (3.29) and (3.32),

which gives the equation

(1 - _Iz)mt [rh(h + L _l - h2/r 2) (v2/L _

AKa = - 3_ [ L2 + r2

r] mtv2K  
h3_2/3 + tat i_

_r2wp

i

This equation is parallel to equation (3.35) for the lateral

stiffness s6 that statements made previously concerning the

lateral stiffness apply here also.

Other inertia effects.- The preceding discussion of

inertia effects suggests that one effect of tire inertia is

to change tire stiffness at high speeds and to introduce a

gyroscopic moment. However, it should be recognized that

there are other inertia effects which will come into play

probably at velocities close to those where the previously

mentioned inertia effects arise. For example, the basic

kinematic equation is based on the assumption of an exponen-

tially distorted tire equator line corresponding to a defi-

nite "static" relaxation length. This assumption can be

safely assumed to be valid (if it is valid at all) only for

| !
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conditions where the elastic forces in the tire predominate

over the inertia forces. Where inertia forces are strong

in comparison with elastic forces, it is at least doubtful

whether the relaxation length remains constant.

While there are undoubtedly other effects of tire

inertia in addition to the ones Just discussed, it appears

probable that the importance of many of these effects, dis-

cussed or not discussed, can be assessed by means of the

following summary statement. The major effects of tire

inertia on the rolling motion appear to come into play at a

velocity of order of magnitude 400 _'# fps _ 270 _ mph

where r is expressed in feet. For velocities considerably

_maller than this velocity, most inertia effects can probably

be safely neglected; for velocities of this order of magni-

tude or higher, it is possible that many of the basic

assumptions of this paper, and of most other papers on this

subject, may be subject to considerable error.

Hysteresis Forces and Moments

In addition to the forces and moments Just discussed,

there ere also certain damping forces and moments which arise

as a consequence of the sometimes considerable hysteresis

losses which arise in the distortion of elastic tires. It

appears probable that these hysteresis effects are only
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important at low rolling speeds (more specificly for low

ratios of v/wr). _I However, for simple types of landing

gears attached to a rigid airplane, the low speed rolling

condition could be the critical condition for design pur-

poses; thus it is questionable whether the hysteresis effects

can be neglected for accurate design calculations. On the \ _.
l

other hand, neglect of the hysteresis effects would usually / _ b__W_---

lead to conservative results but still the degree of con-
/ _

servatism might be excessive.

Apparently the only significant attempt to deal with

this hysteresis problem has been given by Schlippe and

Dietrich, who have presented some plausible assumptions for

dealing with hysteresis effects, but have not attempted to

solve the relatively complex problem of exploiting these

assumptions in detail.42

A treatment of this hysteresis p_oblem is considered

beyond the scope of the present investigation.

e_

6

Structural Forces and Moments

The preceding discussion covers the major ground

forces and moments sad the gyroscopic moments acting on the

H. Fromm, op. clt.

42 B. von Schlippe and R. Dietrich, "Das Flattern

eines mit Luftreifen versehenen Rades, op. cir.
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wheel. In addition to these forces end moments, there exist

the forces and moments acting on the wheel from the support-

ing structure. These will be designated as Fy s for the

net structural force parallel to the Y-axls, Mxs for the

net structural lateral tilting moment and Mzs for the net

structural swiveling moment. These forces and moments

include shimmy damper moments, spring restoring moments,

inertia forces in a landing gear structure (exclusive of the

wheel inertia force) and spring forces arising from the

flexibility of a landing gear strut or of the fuselage of an

airplane. In general, the majority of these forces and

moments can probably be considered to be approximately

linear in behavior except for shimmy damper moments, however,

even these moments can be replaced as a first approximation

by equivalent linear damping moments by using the method

developed by Jacobsen.43

Within the scope of a linear theory, these structural

forces and moments will depend in a linear manner on the

wheel center coordinates _3' @ and Y according to expres-

sions of the type i

Fy s = Tl(Dt)_3 + T2_Dt)@ + T3(Dt)Y (3.35)

Mxs = T_(Dt)_3 + T5(Dt)@ + T6(Dt)Y

43
S. Timoshenko, Vibration Problems i__nnEn_ineerinR.

Second Edition; New York. D. Van Nostrand Company, Inc., 1937,
Pp. 57-61 o



Mzs = T7(Dt)_]5 + Ts(Dt)@ + T9(Dt)Y

where the T's are functions of the dlfferentlal operator

Dr, sometimes called transfer functions, whose specific

forms will depend on the type of landing gear in question.

@

I



o
e@

A_

e
,s

CHAPTER IV

EQUATIONS OF MOTION

The equations of motion for a rolling wheel are

derived and briefly discussed in this chapter.

Derivation of the Equations of Motion

To obtain the first equation of motion, the sum of

the lateral forces acting on the wheel parallel to the

Y-axis is set equal to the corresponding inertia reaction.

This gives the equation

+ I_(Y0 - _3 " r3Y) - Kyy = m Dt2_13 (_.1)Fys

(see equations (3.1) and (3.8)), where the first term in

equation (_.l) is the structural force, the second term is

the net force on the wheel resulting from tire elastic and

= + AKA where AKA is giveninertia forces (K_ K_stati c

by equation (3.33)), the third term is the lateral ground

force resulting from tire tilt and mw is the mass of the

wheel (including the tire).

By setting the sum of the lateral tilting moments

about the wheel center equal to the inertia reaction, the

e quat ion

59
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is obtained (see equations (5.1), (5.8), (3.9) and (3.15)),

where the first term in equation (4.2) is th_ structural

amount, the second term is the moment resulting from the

vertical ground load, the third term is the moment of the

ground forces resulting from tire lateral distortion and

tilt and the fourth term is the gyroscopic moment resulting

from the swiveling motion of the wheel and where Ixw is

the moment of inertia of the wheel about an X-axls (or a

Y-axls) through its center.

By setting the sum of the swiveling moments about the

wheel center equal to zero, the equation

-Mzs + Ka(v'IDtY0 - @) " vvDt(Y0 - _3 - r3Y) "

iywVDtY/r = IxwDt2@

is obtained (see equations (3.5), (3.12) and (3.14)), where

the first term in equation (4.3) is the structural moment,

the second term is the net moment resulting from tire elastic

and inertia forces exclusive of the gyroscopic moment due to

tire lateral distortion (K a = Kastati c + _K_) where AK a
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is given by equation (3.34), the third term is the gyroscopic

moment resulting from tire lateral distortion, and the fourth

term is the gyroscopic moment resulting from wheel lateral

tilt.

Equations (4.1), (_.2), (2.3) and (2.16) or (2.20),

together with the three auxiliary equations (3.35) to (3.57),

are the basic equations of motion for the motion of an

elastic wheel and if the T-functlons in equations (5.35) to

(3.37) are known for a particular landing gear, these

equations can be solved simultaneously to determine the

rolling behavior of the gear.

Next the question arises as to how to most profitably

solve these equations for practical landing gear problems_

There are essentially two methods of attack, either exact

or approximate solution of the equations. In regard to

exact solutions, it should be noted that in the past such

solutions (omitting some of the less important previously

mentioned terms) have been made only for the simplest case

of a rigid swiveling landing gear attached to a rigid fuse-

lage. _,_5 While the exact solution of these equations

9-

B. yon Schlippe and R. Dietrich, "Das Flattern _

" op c itelnes mit Luftreifen versehenen Rades, . ..._..

_5 j. Rotta, op. ---clt"
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for more complex problems does not appear to present any

insurmountable difficulties, it can, however, lead to the

solution of relatively complex transcendental equations such

that it is worth while to examine the possibility of finding

simpler systematic approximations to the general equations.

A second reason for investigating systematic approxi-

mations to the summary theory arises in connection with the

correlation of the summary theory with the other existing

theories. Superficially, in its present form, the summary

theory does not too closely resemble most of the other

existing theories. However, by making use of the approxi-

mations which follow, it is fairly easy to see the correla-

tions between the different theories.

The next chapter of this paper is concerned with the

problem of establishing a series of systematic approximations

to the general equations and the chapter following that one

deals with the correlation of these approximations with the

other existing theories of wheel motion. To expedite some

of the discussion in these later chapters, it is convenient

to digress slightly here to consider one special exact solu-

tion of the general equations, namely, for the case of

steady yawed rolling.
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Consider the case of an untilted wheel which rolls at

constant velocity at a constant small swivel or yaw angle.

For this special case, Y0(X + h) = Y0(X) = constant,

@ = constant and _3 = I" = 0 so that equations (2.2) (with

Y0 for yg), (2.16), _4.1) and (4.5), respectively, reduce

to the relations

_o = Y0 (4.h)

O

Y0 = (L + h)@ = _i @

Fy s + K_y 0 = 0

Mze - Ks@ = 0

(4.6)

By combination of equations (2.4) and (_.5) the tire lateral

distortion is found to be

_'o = ;l e (4.8)

By combination of equations (_.5) and (_.6) the lateral force

on the wheel is found to be

Fy s = -_IKA@
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The quantity _IKA, which represents the lateral force per

unit yaw angle, is an important tire characteristic which is

called the cornering power or lateral guiding characteristic

of the tire. Later in this paper, it is found convenient

to represent this quantity by a single symbol N where

N = _iK_ (/,.9)

Another property of the steady yawed rolling condition

which is of some interest is the distance of the center of

pressure of the lateral force behind the center of the tire,

which is sometimes called the pneumatic castor _ = -Mzs/Fy s.

This quantity, according to equations (_.5) to (_.9), is

equal to

, = -Mz,/_y, = Ka/N (_.IO)

t



C HAPTER V

@
SYSTEMATIC APPROXIMATIONS TO THE SUMMARY THEORY

t

In this chapter, a discussion is given of

bilities for simplifying the preceding equations

and a series of systematic approximations to the

equations are set down.

the poss_

genera

First it is noted that all but one of the equations

of motion (equations (3.35) to (3.57), (4.1), (4.2) and

(4.3)) are usually simple linear equations and present no

great difficulties. The exception is the kinematic equation

which was originally transcendental in form (equation (2.16))

and was later expressed in the form of an infinite series of

linear terms (equation (2.20)). The most promising way to

simplify this equation appeared to be to assume that the

series expansion in the infinite series form of the kine-

matic equation (equation (2.20)) is a rapidly convergent

series such that all terms in the series above a _ertain

value of n can be neglected. The question as to what is

the rapidity of convergence of the series and _ts signifi-

cance cannot be fully answered without a knowledge of the

particular landing gear configuration considered. However,

some insight into this question can be obtained by consider-

ing the case of purely sinusoidal oscillations of the form

i_Ix

YO -- • where the quantity _I will be called the path

65
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Substitution of this expression into the infinite

YO in equation (2.20) yields the result

(i + n__Zl_nDn)y0 = (Pl. + iP2.)Y0
(5.1)

where

Pl. : 1- _2_ 2 + _4_i4 - . . .

5+_ 5
P2- Iw Wl Wl " " "= _ I" _5 5 " I(5.2a)

@

O

r

Another form for the p's can be obtained by substituting

ix
the relation YO = into equation (2.16). This gives

the results

Pl- = cos DI h - L91 sin DIh

P2- = sin Wl h + Lw I cos _i h

The rate of convergence of the p-series of equation (5.22)

can be tested for any given frequency by substituting numeri-

cal values of L, h and Wl into equations (5.22) and

(5.2b) and comparing the individual terms. A typical com-

parison is shown in Figure 4 for the conditions L = 0.8r,

and h - 0.5r. The abscissa of this plot represents the
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oscillation's wave length S = 2w/_ I and the ordinate

represents the p functions. The term labeled Pl2 means

that this curve represents the sum of the first two terms in

the Pl_ series and similarly for the other terms. (The

_approximation letters are explained later.) From this

_ gure it is seen that the series converge very rapidly.

From a purely qualitative point of view, the Figure might be

considered to indicate that for dealing with shimmy wave

lengths greater than approximately four tire radii, the use

of two terms in each series fairly well represents the exact

variations, for wave lengths greater than approximately

6 radii, one term in the P2 series and two in the Pl

series are sufficient and for wave lengths greater than about

20 radii, one term in each series is sufficient. (The numer-

ical values of wave length cited here, of course, only

represent order of magnitude and are not necessarily directly

quantitatively significant.) To correlate these observations

with the conditions of wave length likely to be encountered

in practice, it can be stated that the experimental data of

Schlippe and Dietrich _6,47 and Kautrowitz, 48 which are

46 B. von Schlippe end R. Dietrich, "Das Flattern

" op. cit.eines bepneuten Rades,

47 B. yon Schlippe end R. Dietrich, "Das Flattern

" op. cir.eines mit Luftreifen versehenen Rades,

48 Arthur Kantrowitz, op. ci_._tt.

w
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probably fairly typical in this respect, demonstrate wave

lengths which are about 4 radii long at zero rolling velocity

and which increase with increasing rolling velocity. Thus

it appears possible that the use of only a few terms in the

series expansion may lead to a reasonable prediction of

shimmy characteristics for practical operating conditions.

With the preceedlng considerations in mind, the

following approximations to the general wheel motion equa-

tions of the summary theory were established.

@p

!
|

!
|

!
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Approximation A

As a first approximation for the general kinematic

equation (2.20), all terms for n_ 3 are neglected. This

gives the approximate differential equation

Y0 + _IDY0 + _2D2y0 + _3 D3y0 = _0 + 51@ - _Lhr ¥ (5.3)

This equation, together with all of the general force and

moment equations previously discussed, is referred to here-

after as approximation A.

@
Approximation B

A second less exact approximation for equation (2.20)

is obtained by letting Zn = 0 for n _ 2. Thus



@

Y0 + _IDYo + _2D2yo = _0 + _l @ " _Lh y
r

This equation will be referred to as approximation B.

7o

Approximation C i

Another cruder approximation for the general differ-
I

ential equation (2.20) is obtained by neglecting all terms

in the series for n > i. This gives the differential

equat ion

Y0 + _IDY0 = _0 + _l @ - ILh y
r

(5.5)

]i

which will be referred to as approximation CI.

Approximation C2

As a slight simplification of approximation CI, the

relatively t_important, or at least questionable, term

involving _ may be omitted in equation (5.5). This gives

the equation

6

Y0 + _IDY0 = _0 + 51@

which will be referred to as approximation C2.

With the aid of equations (2.2) and (5.4), equation

(5.6) can be written in the more easily interpreted form
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_o = -_l_ (5.7)

or, by using in addition equations (3.1), (3.3) and (_.9)_ as

N FyR_ . NMza

: " : - (5.8)

q

which shows that for this approximation, the lateral dis-

tortion of the tire is directly proportional to the angular

distortion.

The physical meaning of this approximation can be

obtained by considering that equation (5.8) can also be

obtained by letting the ground contact semi-length h

approach zero in the general differential equation (2.20)

(as was previously noted by Rotta49) since all terms in the

series for n >l and the tilt term contain the multipli-

cation factor h. Then equation (2.20) becomes

i

| i

Y0 + LDY0 = _0 + L@

or with equations (2.2), (3._) and (5.9)

(5.9)

@
@ : -L_ (5.zo)

i.

6
_9 j. Rotta, op. cit.
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(5.ii)

rand the combination of equations (5.10) and (5.11) gives

N

S

which is the same as equation (5.8) for any given combination

of N and K_. Thus essentially, when written in the form

of equation (5.8), this approximation C2 formally corresponas

to the assumption of h = O.

In regard to the accuracy of results obtained from

this approximation, it can be qualitatively stated that

reliable results should be expected only when the neglected

quantity h is small with respect to the characteristic

length S of the rolling motion in question (for example,

the wave length of a sinusoldal oscillation). Fortunately,

this condition is at least sometimes satisfied for practical

rolling condltlons.

@
@

Approxlmat ion DI
4

Before considering the next approximation, it should

be remembered that all of the terms neglected in the pre-

ceding approximations were multiplied by the tire semi-length
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h, thus these approximations implied the assumption of pro-

gressively smaller and smaller tire ground contact lenEth or

progressively larger and larger wave length. In order to

make further simplifications, it is necessary to make some -

simplifying assumption about the other tire properties.

Three such assumptions are now made to further simplify the

equations of approximation C2. For the first approximation,

to be called approximation D1, the simplification

i,
is adopted.

finite a

_i : 0 (5.15a)

Then it follows from equation (5.7) that for

xo = 0 (5.15b)

which is the basic equation for this approximation. Thus

for this approximation, the tire is free to twist but not to

deflect laterally. This, therefore, also implies infinite

lateral stiffness or

o K_ = - (5.13c)

For the simplest form of wheel shimmy due to tire

elasticity and not to structural elasticity (considered later) "
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approximation DI does not provide accurate information. For

wheel shimmy due largely to structural elasticity rather than

tire elasticity, this approximation may be of some value;

actually most existing theories corresponding to this approx-

imation have been developed for the primary purpose of con- ........

sidering the influence of structural elasticity on wheel

shimmy.

Q

Approximation D2

As a second simplification of approximation C2, the

assumption

(5.]Aa)

could be adopted and the corresponding theory is designated

as approximation D2. From equation (5.7), it is evident

that this approximation implies for finite k0 that

D
q@

which in turn implies

= o (5._b)

N _ mm

K a =¢N = ,,



@ Thus for this approximation, the tire is considered as

torsionally rigid but laterally flexible.

Approximation D3

75

A third simplification of approximation C2 can be

obtained by keeping the quantity _i finite but considering

the tire to have both infinite lateral stiffness and infinite

torsional stiffness or

KA=Ka=N=a (5.15)

@

0

@

This approximation, which is designated as approximation D3,

thus represents the case of a rigid tire and consequently

also implies a = _0 = 0.

The seven preceding approximations A to D5 now furnish

a choice of seven simplified approximations based on the

summary theory and it remains to determine which, if any, of

these approximations is the simplest one which can be used

for any particular tire motion problem. While it is not yet

possible to give a completely satisfactory answer to this __

question, some insight into the answer can be gained by corn-

paring the various approximations with the other existing,

at least partly successful, tire motion theories which are

mostly closely related to these approximations. Such a com-

parison is carried out in the next two chapters of this paper.
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CLASSIFICATION OF EXISTING THEORIES

@

It is the purpose of this chapter to brieflyreview

and evaluate the major previously published theories of

wheel motion and to correlate these theories with the pre-

ceding summary theory of this paper and its approximations

wherever such a correlation is possible. To accomplish this

aim, each of the major previously published theories is first

considered individually in a separate subsection and after-

ward an abbreviated overall summary classification is pre-

sented in a tabular form.

6

O

Individual Review and Evaluation of Existing Theories

Schlippe-Dietrich theory.- The tire motion theory of

Schlippe and Dietrich 50,51'52 of course, corresponds directly

to the summery theory of this paper since the summary theory

was taken directly from their theory with only minor modifi-

cations. These modifications cover a more detailed consider-

ation of some of the influences of lateral tilt and of tire

inertia forces and moments. It should be noted, however,

50 B. von Schlippe and R. Dietrich, "Das Flattern

sines bepneuten Rades," op. cit.

51 B. yon Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, op. cit.

52 B. yon Schlippe and R. Dietrich, "Das Flattern

" op. cir.eines mit Luftreifen versehenen Rades,

76
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that the Schlippe-Dietrich theory is more advanced than the

summary theory of this paper in that it partly takes into

account the effects of the width of the ground contact area.

This effect, as was previously noted, is, however, probably

not of great practical importance.

Rotta theory.- Rotta's tire motion theory53 correspcnds

to the summary theory of this paper since it is also based

on the Schllppe-Dietrlch theory and represents a slight

extension of that theory to more adequately take into account

most of the effects of tire tilt and the width of the ground

contact area_ No inertia forces due to tire lateral dis-

tortion or centrifugal forces are discussed.

Bourcier d__eCarbon advanced theory.- Bourcier de

Carbon5_ has developed two closely_related°theorles of tire

motion which are si_dlar to approximations B and C2. The

first of these will be referred to as the Bourcier de Carbon

advanced theory and the second as the Bourcier de Carbon

elementary theory. The advanced theory will be discussed

first.

Bourcler de Carbon's advanced theory uses 5 basic

tire properties which are correlated with those of the pres

ent paper by the following relations

53 •
J..Rotta, op. clt.

5_ Christian Bourcier de Carbon, oR. ci___t.
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>(6.1)

6

-j

which were obtained by comparing this theory with the cor-
k

responding approximation B. The symbols of Bourcier de

Carbon are underlined and do not necessarily bear any rela-

tion to any other not underlined symbols in this paper desig-

nated by the same letters. While the first four symbols

bear a simple relation to those of the present paper, the

fifth symbol R bears a more complicated relation which is

worth some detailed consideration.

Bourcier de Carbon defined the tire property R a_s

follows. If an untilted wheel is rolled forward while

exposed to a constant turning moment about a vertical axis

and with no side force, it will move in a circular path of a

definite radius; R is defined as the reciprocal of the

product of the turning moment and the path radius.

!
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Unfortunately, however, this constant moment circle-rolling

experiment is not easily performed. Therefore, the above

equation for R_, which expresses R in terms of the more

easily measured and more fundamental quantities L, h and

K a is of importance for the use of the Bourcler de Carbon

advanced theory.

In regard to the subject of tilt, Bourcier de Carbon

omits many of the details considered in this paper. For

example, he implicitly assumed K T -- c_ = c T z | = 0 and

the inclination angle of a landing gear N to be small

(taking cos • _ 1). However, these omitted tilt terms may

be as important as the terms considered; therefore, Bourcier

de Carbon's considerations of tilt are incomplete.

For the benefit of readers of Bourcier de Carbon's

paper,55 it should be noted that there exist certain mis-

conceptions in the parts of that paper which deal with com-

parisons between theory and experiment. In particular, it

appears that some of the experimental data quoted by

Bourcier de Carbon from a paper by Schlippe and Dietrich 56

is misquoted or misinterpreted. Consequently, Bourcier de

Carbon's conclusion that these experimental data provide a

G

55 Christian Bourcier de Carbon, o_. ci___t.

56
B. von Schlippe and R. Dietrich, Zur Mechani k de___ss

Luftreifens, op. ci___t.
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remarkable check of his theory is not completely Justified;

actually these experimental data only provide an indirect
V

fair check of the theory.

Greidanus theory.- Another theory similar to the pres-

ent approximation B, except for the influence of tilt, is

the theory of Greidanus.57 Greidanus considers the influence

of tilt in much greater detail than does Bourcier de Carbon.

However, he also fails to consider the force term propor-

tional to Ky; thus his results also do not fully describe

the influence of tilt.

In addition, Greidanus's kinematic equation differs

the tire.

re ads

from equation _5.4) for approximation B in that he has intro'

:::__ _-___:-._:_

duced a slightly'different term associated with tilting_ of

In the present terminology, Greidanus's equation

Y
Y0 + ZIDY0 + _2D2y0 = _I0 + ll@ - _2

• : "_ _ _

(6.2)

It Is seen that the difference of the _wo equations lies in

the coefficient of _. For approximation B (equation (5._, .........

the coefficient is

m@

_Lh (Approximation B) (6 5)
r

57
J. H. Greidanus, op. __cit"
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and for Greldanus's equation (after substituting for _2

from equation (2.20))

81

+ h/2)h
r

(Gre idanus ) (6._)

i

7

If _ is set equal to (L + h/2)/L then the two coefficients

are identical; thus Greidanus's kinematic equation can be

considered to be a special case of the corresponding equation

of approximation B.

No further detailed discussion of Greldanus' theory

is given in this paper for the reason that lack of a trans-

lation of Greidanus' paper prohibits a complete understanding

of some parts of the paper.

Bourcler de Carbon elementary theory2 ° Bourcier de

Carbon's elementary theory corresponds to approximation C2

of this paper except for the minor shortcomings which were

discussed in connection with the Bourcier de Carbon advanced

theory. The only difference in Bourcier de Carbon's two

theories is that the coefficient R in the elementary theory

is taken as infinity as compared with the value given by

equation (6.1) for the advanced theory. This corresponds to

the assumption _2 = 0 which was previously made in passing

'from approximation B to approximation C2 (compare equations

5_
Christain Bourcier de Carbon, op. cir.
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(5.4) and (5.5)). The physical significance of

obvious from equation (6.1). It means h = 0.

82

R= e_is

Melzer theory.- The Melzer theory for tire motion59

is also similar to that of approximation C2 except for

details of the tilting process. Melzer's kinematic equation

is identical with that of approximation C2 and of Bourcier

de Carbon's elementary theory. However, Melzer's theory

differs in that it takes the moment due to tire twist as

e@

proportional to the swivel angle (-@) rather than the total

tire twist angle (Dy 0 - 9). Logically, this assumption

would appear Justified only if y' (( @. This, however, is

not true in general. In connection with this point, it is

interesting to note that for the simplest case of wheel

shinny (see Chapter VII, Case I), the Melzer approximation

leads to one of the same stability boundaries and to the

same limiting high speed shimmy frequency as the more correct

approximation including the term in Dy O. This restricted

agreement, however, hardly Justifies the use of Melzer's

approximation since predictions of the two approximations do

differ with respect to calculations of the divergence of the

shimmy oscillations and with respect to another stability _

boundary. Moreover, for simple problems, the Melzer approxi-

mation is not significantly easier to solve than the more

correct form including the Dy 0 term.

59 M. Melzer, o__. ci__!t.
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Moreland advanced theory.- Moreland has proposed

three versions of a tire motion theory. 60'61 The most

advanced version of these is governed by the equation

83

+ ClDt= = =

or

CI_IVD2yo + _IDYo + YO = CI_IVD@ + (_i - a)@ (6.6)

ea

6

@

= 41

where C 1 is a time lag constant. This theory corresponds

to a generalization of approximation C2 (with pneumatic

castor neglected, that is, _ = 0) to the extent that for

C 1 = 0 equation {6.6) is identical with the basic equation ..........

for approximation C2. However, with C1 _ 0 this theory

is not directly compatible with the summary theory and its

approximations.

Moreland uses the following type of reasoning to estab-

lish this equation. First, for the case of steady yawed

rolling, it is known that a yaw angle a is developed as a

consequence of the application of a lateral force Fy X

0' ' '

William J. Moreland, "Landing-Gear Vibration,"op.cit.
._._.._

61 William J. Moreland, "The Story of Shimmy", op. cit.
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according to the_elation

a = -Fy_/N (6.7)

a

m

which is the basic equation for approximation C2. However,

for the dynamic rolling case obviously this equilibrium yaw

angle cannot be established immediately upon application of

a given side force; rather, a finite amount of time will be

required for the equilibrium yaw angle to develop. Moreland

has attempted to take this finite time lag into account by

modifying equation (6.7) to the new form of equation (6.5).

In the latter equation, the constant C 1 is a measure of

the time lag of the yaw angle behind the applied force Fy_.

This time lag term introduced by Moreland does not

correspond exactly to any of the terms in the summary theory

and to this extent Moreland's advanced theory is apparently

incompatible with the summary theory. However, a partial _

reconciliation of the two theories can be obtained by recog-

nizing that Moreland did not consider in detail the tire

inertia forces and moments due to tire distortion. A pos-

sible interpretation of the time lag term is that it may pro-

vide a simplified expression for these inertia effects. In

particular, it is interesting to note that, as will be shown

later, the gyroscopic moment due to tire distortion produces

some effects similar to those produced by the time lag term.
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In regard to t_ question of the relative merits of

the introduction of the overall time lag term and of the

detailed inertia effects, it appears that this question can

be decided only on the basis of relative agreement with

experimental data. However, apparently the only existing

experimental data containing time constant information which

is suitable for such a comparison is Noreland's data 62 which

has not yet been published in detail. Consequently this

paper cannot present a quantitative evaluation of the rela-

tive merits of these two approaches.

Moreland intermediate . theor[.- As a simpler approxl-

marion for the advanced theory, Moreland has stated 63 that

the influence of the time lag term in the kinematic equation

for his advanced theory (equation (6.5))can be approximated

for the usual range of shimmy frequencies by using the

simpler kinematic equation

4°_la = "_o (6.8)

Insomuch as approximation C2 h_s the kinematic equation

_Ia = -_o (5.7)

Ibld.

65 William J. Moreland, "Landing-Gear Vibration,"

22. ci__lt•
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and approximation D2 has the kinematic equation (5.1_b),

which could be written in the form

.a m -)'0

0

!

it then follows from a comparison of these last three equa-

tions that Moreland's intermediate theory is a theory which

falls somewhere between approximations C2 and D2. Since

Moreland has not offered any concrete Justification for this

approximation, it does not appear warrented to discuss it

in further detail in this paper.

Moreland elementary theory.- Moreland's most elemen-

tary theory corresponds directly to approximation D3, the

case of a completely rigid tire, except that it, like More-

land's other two theories, does not take into account the

pneumatic castor (e = 0).

Temple elementary theory.- Temple has proposed an

elementary theory for the motion of tires which is identical

with approximation D1. 6_ Temple has chosen the most general

form of this approximation in that he has considered both

the tire torsional sitffness K a (indirectly interpreted as

an increase in trail) and the cornering power N.

In regard to the general applicability of Temple's

elementary theory, it should be noted that this theory was

64 G. Temple, RAE Report No. AD 31_8, o__. ci___tt.
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developed before there was available experimental evidence

pointing to the need for more detailed considerations of

tire lateral stiffness. Subsequently, Temple has indicated

a need for more refined considerations of the tlre 65 and has

developed independently a theory similar to the theory of

Schlippe and Dietrich. (This theory is as yet unpublished

66
but has been partly discussed by Hadekel.)

Maler theory.- Maier has proposed a simplified theory

similar to approximation D1 with the difference that he makes

the added assumption that the tire torsional stiffness K a

is zero.67 In regard to this theory, like that of Temple,

it should be noted that t_ theory was developed before

there existed much experimental evidence pointing to the

need for more refined considerations for shimmy behavior.

Taylor theory.- Taylor, in a brief paper, 68 suggested

another tire motion theory which corresponds to approximation

D2 except that details of the tilt process are omitted.

65 G. Temple, "Note on American Work on Kinematic and

Dynamic Shinlny," RAE Re2ort No. AD _056, 19_0, 9 PP.

66 R. Hsdekel, "The Mechanical Characteristics of .............

" S. and T. Memo. No. 5/50, British MinistryPneumatic Tires,
of Supply, 1950, 1_6 _-

67 E. Maier, o_2. _cit"

68 j. Lockwood Taylor, o13. clt.
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Kantrowitz and Wylie theories.- The preceding

theories for tire motion, which seem to cover most of the

known theories, may all be considered as closely related to

the summary theory of this paper. However, there exist two

other well known theories by Kantrowitz 69 and Wylie 70 which

apparently cannot be derived from the summary theory and

thus cannot be accurately classified here with respect to

the other theories. The best that can be said for their

classification is that they possess some of the merits of

approximation B but in other respects are inferior to

approximation D1. To point out the deficiencies of these

two theories, it is sufficient to consider two simple cases

of tire motion as follows.

The first case to be considered is the steady straight

line motion of a nonswiveling rolling wheel which is not

yawed with respect to its direction of motion and which has

no lateral forces or moments acting on the wheel. Obviously

for this case, there will be no lateral distortion of the

tire or

_0=0

@

: O

69
Arthur Kantrowitz, op. cit.

70 Jean Wylie, op. cit.



On the other hand, Kantrowitz's basic kinematic

equation, which is

89

_0 + LDR0 = L@ - _2D@

I

gives for this steady unyawed case (with

(6.9)

D_ 0 = D_ = 0)

em

_0=L@

which is obviously incorrect since it implies that the

lateral distortion of a stralght-rolling wheel, which actual'

=

ly must be zero, depends on the choice of the coordinate axes

to which @ is referred. 0nly for the special case where _I

the wheel runs along the reference axis (that is, for @ = 0)

is Kantrowitz's theory correct in this respect and in an

actual shimmy problem, this is possible only for the case of

zero trail; thus Kantrowltz's theory cannot be necessarily

expected to give reliable results for trails different frOm ....

zero. Thus it must be concluded that Kantrowitz's theory is

at least of doubtful value for practical shimmy calculations.

To evaluate the Wylie theory, consider the case of

steady untilted yawed rolling of a wheel moving parallel to

the X-axis. It is obvious that the lateral distortion of

the tire R0 will depend only on the swivel angle @ (@ = a)

and in no manner will depend on the absolute lateral
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displacement of the wheel _0" On the other hand, the basic

equation of Wylie, which in the present terminology is

Y0 + LDY0 = L@ - _2D@ (6.10)

gives for this steady case (where Dy0 = D@= 0) the relation

Y0 = L@ or by using equation (2.2)

A0 = L@ " _]0

J

]7 7

a]

I

@

This equation states the obviously incorrect conclusion that

the tire distortion is dependent on _0 or, in other words,

that it depends on the choice of the coordinate axes. Thus,

only for the special case _I0 = 0 is Wylie's theory plaus-

ible in this respect and this implies that the reference

axis must be taken to pass through the path of the wheel.

Since this condition is satisfied in an actual shimmy motion

only for the special case of zero trail, it must be concluded

that Wylie's theory, llke Kantrowitz's, can at best be fully

valid only for zero trail and that consequently this theory

is also ef doubtful value for practical shimmy calculations.

Othe____rtheories.- In addition to the Just discussed

theoretical papers dealing particularly with the subject of

landing gear shimmy, there exist a number of relevant papers

which are either largely of historical interest, which deal
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particularly with automobile shimmy problems, which deal

only briefly with landing gear shimmy problems, which deal

with other tire motion problems such as yawed rolling and

verring off or ground looping, or which deal with the deter-

mination of tire stiffness parameters. The reader is refer-

red to the bibliography prepared by Dengler, Goland, and

Herrman71 for a substantially complete listing and brief

discussion of most of the papers in this class.

Of particular historical interest among the work not

considered here in detail are the work of Broulhiet72 and

the work of Frormn73 These two investigators independently

were apparently the first to recognize the importance of tire

lateral distortion and cornering power in regard to the wheel

shimmy problem. Taking these factors into account, both

authors developed tire motion theories whose kinematic rela-

tions correspond to that of approximation C2 of the present

paper.

Tabular Classification of Existing Theories

In order to permit easier visualization and comparison

of the merits of the various theories discussed, the major

@

71
Max Dengler, Martin Goland and Georg Herrman,

o_2.ci__A.

72
M. G. Broulhiet, op. __cit.

73 H. Frown, o_2.cir.
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assumptions of the various theories of tire motion are col-

lected together in Table I. This table lists the nature of

the assumptions made in regard to the primary tire parameters

N, Ka, K k, c and _n for each of the theories discussed.

e_

6
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CHAPTER Vll

APPLI_ATION TO WHEEL SHIMMY PROBLEMS

f

Q

Q

In the preceding chapters of this paper, a set of

basic differential equations for the motion of an elastic

wheel have been derived and have been compared with the

corresponding equations of most of the previously published

theories. These comparisons have indicated that, from a

mostly qualitative point of view, the summary theory of this

paper and the systematic approximations to it incorporate

the major merits of the existing theories of tire motion and

avoid some of their disadvantages. However, it still remains

to investigate how to best apply the theory to specific

landing gear problems, to investigate the question of the

absolute or quantitative accuracy of the summary "theory and

of the other theories and, if the summary theory be found

satisfactory, to establish the simplest systematic approxi-

mation to it which will give reliable information regardin E

any particular problem in tire motion. The best way to

accomplish these various aims appears to be through the dis-

cussion of the shimmy of several particular landing gear con-

figurations and such a discussion is given in this chapter.

Two particular landing gear configurations are discussed.

These two configurations and the reasons for their discussion

are described briefly as follows.

94
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Description of Particular Cases Considered

95

The first landing gear configuration considered,

which is designated as Case I, is illustrated in Figure 5.

It consists of a rigid landing gear whose only degree of

freedom other than tire distortion is rotation of the wheel

about an inclined swivel axis. This particular configuration

is chosen for the reason that most of the existing experi-

mental data have been obtained for such a configuration.

Thus, in connection with this configuration, it is possible

to discuss _d evaluate the summary theory, its systematic

approximations, and the existing theories with respect to

agreement with experiment in regard to the various important

characteristics of a shin_ny motion such as stability boun-

daries, shimmy frequency and divergence.

The second landing gear configuration considered is

the case of an untilted landing gear possessing two degrees

of freedom aside from tire distortion. This landing gear

configuration, which is illustrated in Figure 6, consists of

a wheel free to swivel but not to tilt which turns about a

rigid vertical swivel axis, this swivel axis being attached

by a spring k to the supporting structure. (This spring is

an idealized representation for the lateral flexibility of

an actual landing gear strut.) This Case II configuration is

discussed for two purposes, first to glve an illustration 6f ....
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the effect of structural elasticity on wheel shimmy behavior

and second to provide an example which is better suited than

Case I for bringing out the relative merits of several of

the systematic approximation theories for a case involving

structural flexibility.

Case I

General derivation.- In this section, the basic equa-

tion of motion is derived according to the summary theory

for the special case of sn inclined rigid swiveling landing

gear (Case I), which is illustrated in Figure 5. This equa-

tion of motion could be obtained by making use of the pre-

viously derived equations of motion for the completely

general case; however, it is simpler to derive it here sepa-

rately in a slightly different form for this particular prob- ,

lem.

The geometric quantities which enter the discussion

of this particular landing gear are indicated in Figure 5.

This gear has a swivel axis lying in the XY-plane and is

inclined forward from the vertical Z-axls by a constant anEle

m (see Figure 5). The perpendicular distance a between

the center ground contact point 0 and the swivel axis is

called the trail.

constant velocity

from the XZ-plane.

The swivel axis is assumed to move with

v along the X-axis without lateral motion
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Rotation of the wheel structure about the inclined

swivel axis by an amount , results in a component of angu-

lar rotation about the vertical axis 9 of magnitude

@ = , cos a (7.1)

a component of rotation about the X-axle y (tilt) of mag-

nitude

y = -, sin (7.2)

i

Q

0

and a lateral deflection _0 of magnitude

n0 = -a, (7.3)

where all angles except . are considered small.

The sum of all moments about the swivel axis must

equal the inertia reaction _Dt2 , = _v2D_ where I, is

the moment of inertia of the wheel structure (including the

wheel) about the swivel axis. The moments about the swivel

axis are assumed to consist of the moments resulting from

the previously discussed forces and moments arising from tire

distortion and ground loads plus the moments applied to the

wheel b_ the supporting structure which are assumed to con-

sist of a restoring spring of moment p, and a linear

a



I00

damper of moment gDt, = gvD,, where p and g are

constants. Thus sunmnation of the moments about the swivel

axis gives the differential equation

-EKR(Yo- _0 ) - Ky¥_a - F z sin • EcAYO + (i- cR)_ 0 - cy_ +

K a cos m(Dy 0 - 9) - v v2 cos .D(y 0 - _0 ) - p, -

gvD* = I,v2D2_

@

where the first term is the total ground force due to tire

lateral distortion and tilt (see equations (3.1) and (3.8))

times its moment arm a; the second term is the vertical

force times it moment producing fraction sin x times its

moment arm (see equation (3.9)); the third term is the

moment about the Z-axis due to tire twist (see equation

(3.5)) corrected by cos , for the component about the

swivel axis; the remaining terms on the left hand side repre-

sent the gyroscopic torque due to lateral tire distortion

(see equstion (3.12)); the spring restoring moment and the

linear damper moment. Now by making use of equations (7.1)

to (7.3), equation C7.4) can be written in the form

AID2, + A2D , + A3, + BIDY 0 + B2Y 0 = 0 (7.5a)
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where

Al= _v 2

A2 = a_v 2 cos • + gv

A 3 = a2K_ + K a cos2 N + _ +

B 1 = -K cos m + vv 2 cos N

B2 = aK_ + oAF z sin R

>(7.5 b )

and

63

PR = aKy sin m - aF z sin R + acRF z sin m + cyF z sin 2 l

(7.5c)

The general relation between _ and Y0 for this case is

found by substituting for 710, y and @, according to

equations (7.1) to (7.3) in the general kinematic equation

(2.20) . Thus

Y0 + _ _nDny0 = -at + _I* cos _ + _ sin R
n=l r

q&

4*

or abbreviating

o = i + _Lh tan R |7.6)
r_ 1
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and rearranging

(o_ I cos z - a), = Y0 + _ _nDny0 = _nDny0 (7o7)
n=l n=0

since tO = i. Differentiating this result gives

(_I cos z - a)D_ = n=_ _nDn+ly0 = n=l _n_IDny0 (7.8)

and similarly

0

(el I cos R - a)D2* = ___ _n.2Dny0 (7.9)
n

Substitution of these relations into equation (7.5) and

multiplication through by o _i cos m - a gives

.e

AI _ _n-2 Dny0 + A2 _n-iDny0 + A 5 _nDny0 +

Bl(a_ I cos m - a)Dy 0 + B2(e_ I cos R - a)y 0 = 0

Finally after adding all terms of llke order, substituting

N = _lKk (equation (4.9)), substituting for some of the

A's and using equation (7.6), there results the equation

_FnDny 0 = 0



w where

1o5

j-

F 0 = eaN cos N + K s cos 2 _ + p + Pu + u_

F I = a2N + a'K a cos R + P_I + _ _I + gv + aZlTV 2 cos E

+ As_n; n > 2 >

F 2 = A 1 + A2_ 1 + AS_ 2

Fn = Ai_n_ 2 + A2_n_ 1

@

and

U,, = o_F z sin "(_I cos m - a)

a' = a + (I - a)_ 1 cos E = a - _ sin ar
%.

(7.io)

Equation (7.10) provides the general differential

equation of free motion for the system of Case I according

to the summary theory. The corresponding equations for the

systematic approximations A to D3 can be easily obtained

from this equation by setting the appropriate Zn'S and

_, KA, Ka, and N equal to zero or infinity according to

the procedures outlines in Chapter V. For example, for

approximation C2 the differential equation is obtained by

letting _n = 0 fcr n > 1 and _ = 0, in equation (7.10).

The following differential equation is thus obtained for

approximation C2.



g

64

6

@

EoD3Y 0 + EID2y0 + E2DY 0 + E3y 0 = 0

where

Eo -

E 1 = I,v 2 + (avv 2 cos i + gv)_ 1

E 2 = a2N + aK a cos _ + P_l + PR_l + gv + _lVV 2 cos 2

E 3 = aN cos _ + K a cos 2 R + p + PK + U_l

and

U_l = CAFz(_ I cos m- a) sin R

(7.11)

Stabillt_ of motion.- Now having established the

basic equations of motion for the case of a rigid swiveling

landing gear, attention is directed next to the meaning of

these equations with respect to their predictions of the

shimmy behavior of the landing gear. However, before going

into" this subject in detail, it may be useful to discuss

briefly what sort of information is desired about the motion

of a landing gear. Basloly, the most important question is

to determine whether or not the motion is stable, that is,

does the wheel tend to move in a straight llne (with decaying



@.

i05

shimmy oscillations or decaying aperiodlcal motion) or does

the tire tend to move laterally out from its rectilinear

course (with divergent shimmy oscillations or divergent

aperiodical motion). To answer this question of stability

for linear systems, the analytic methods of Routh74 or

Hurwitz75 or graphical methods similar to those introduced

by Nyquist76,77 are available. Any of these methods will

provide, for most cases, a procedure for determining whether

any particular combination of landing gear parameters and

rolling velocity is stabl_ or unstable.

In general, for complicated problems, rather than

investigate the stability of a landing gear by these methods

for all possible conditions, it may be more convenient and

sometimes more valuable to draw various types of stability

diagram_ describing the system in question. For example,

for Case I, a typical experimental type of stability diagram

in shown in Figure 7 which presents boundaries between the

@

74 Edward

Bodies, Part II.

1905, _84 pp.

J. Routh, Dynamics of _a.System of
Sixth edition; New Y-ork. The Ma_-Millan Co.,

75 E. A. Guillemin, The Mathematics of Circuit

Analysis. New York: John Wi e_ and Sons, Inc-T., 1949, 590 ppo

76 H. Nyquist, "Regeneration Theory," Bell System

Technical Journal, Vol. ll, Jan. 1932, Pp. 12_l.

77 W. Frey, "A Generalization of the Nyquist and

Leonhard Stability Criteria," Brown Boveri Review, Vol. 33,

No. 3, March 1946, Pp. 59-65. ----
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regions of stability and instability as functions of trail

and rolling velocity for a specific landing gear model.

Another useful type of stability diagram for some problems

might be a plot of boundaries between stable and unstable

regions as functions of damping moment and rolling velocity.

To determine these stability boundaries, use is made

of the well known fact that the motion of a linear system

can change from a stable to an unstable condition only where

the motion is purely oscillatory, in terms of _, of the

form

@

i_ix

* = _m (7.12)

or where the motion is purely uniform, of the form

* = *m (7.13)

@

Thus all possible stability boundaries can be obtained by

directly substituting expressions of the form of equations

(7.12) and (7.13) into the basic differential equations. In

connection with the question of what form o_ the differential

equation to use, it is of some importance to note that the

final form where the equation is expressed in terms of one :_

variable is often not the most convenient form to use. For

!

i
I
| - _......._
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example, for Case I, the purely oscillatory boundaries are

most advantageously obtained by using the equations (7.5)

and (7.7) with the substitutions

: _m e

ix+%_)
YO = YOm e

@

m-b

The advantage in this particular choice arises from the fact

that it leads to two algebraic equations, one of which does

not include the damping parameter g. This isolation of the

parameter g usually slightly eases the mathematical labor

of solving for the purely oscillatory boundaries.

The equations governing the stability boundaries for

Case I for the summary theory and for the systematic approx-

imations are listed in the Appendix.

Comparison and evaluation o__fthe summary theory and

its systematic approximations.-The dual object of the pres-

ent section is (1) to further assess the value of the summary

theory by comparisons between the predictions of this theory

and the available experimental data for Case I conditions

and (2) to determine by comparison of the relative predictions

of the summary theory and its systematic approximations, what

is the simplest satisfactory systematic approximation to the

summary theory. Discussion of the previously published
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theories, as applied to Case I conditions, is contained in

a later section•

For convenience, the following discussion is divided

into separate considerations of stability boundary conditions

and unstable shimmy conditions•

Stability boundary conditions: The present subsection

deals with a discussion of theoretical and experimental

stability boundary conditions insomuch as they are influ-

enced by the tire parameters _n(n = I, 2, . . .), _, N,

and v. In the major part of this discussion, the type of

stability boundaries considered are the type obtained by

plotting curves of trail against rolling velocity for those

trail conditions separating regions of stability and insta-

bility. The general shapes of these stability boundaries for

Case I, according to the summary theory and the systematic

approximation theories A to D3, are sketched in Figure 8 for

the special condition of no damping or gyroscopic moments

(g = T = 0). It is seen that the summary theory and approxi-

mations A to C2 each predict that at high speeds the motion

is stable for large trails and unstable for small trails;

the horizontal boundary line is the same for each case, and

is generally located at a trail roughly equal to the tire

radius. (This boundary is theoretically completely indepen-

dent of the spring restoring moment PDt, and is relatively

independent of swivel axis inclination _.)
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Approximations DI, D2, and D3 fall to predict thls boundary.

Also these three approximations, together with approximations

C1 and C2, fall to predict any effect of rolling velocity on

the low Speed stability boundaries while the higher theories

demonstrate that for sufficiently small speeds, the motion

becomes stable for all small trails according to approxima-

tion B and for most of the small trail regions according to

the higher theories. Also at low speeds and large (usually

impractical) trails, the higher theories (B and above)

indicate that the motion becomes unstable at sufficiently

small speeds. The effects of the omitted damper and gyro-

scopic moment terms would be to reduce the size of the

regions of instability.

(a) Effect of higher _n terms: As a first test of

the summary theory and its systematic approximations, there

are available the experimental data of Schlippe and

Dietrich, 78,79,80 which were obtained with a small model

landing gear equipped with a 26 cm (i0 in.) diameter pneumatic

tire. This model landing gear was tested st relatively low

speed conditions where the higher _n terms (52, _3' ' " ")

78
B. yon Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, op. __cit" -- --

79 B. yon Schlippe and R. Dietrich, "Das Flattern

" op. citeines bepneuten Rades,

80 B. yon Schlippe and R. Dietrich, "Das Flattern
N

eines sit Luftreifen versehenen Rades, op. cit.

==
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are of some importance; consequently, these data provide

an opportunity for testing the relative and absolute validity

of the summary theory and the higher approximation A to C2

(which differ essentially only by their inclusion or omis-

sion of the higher _n terms).

The basic landing gear and tire constants for the

Schlippe-Dietrich model, which was tested only in the until-

ted condition (_ = 0), as taken from Schlippe and Dietrich's

papers, are as follows

i=p=g=0

I _ 0.53 + 0.0025 a2 cm-kg-sec 2

L = lOcm

N = kg/rad

Ea : 3o_o cm-kg/rad

KA = _5 kg/cm

g

@

The quantities _i, h and the higher

from the previously discussed relations

h = _l - L, and _n = (nL + h)n-1/n '

and (2•20)).

_n'S were calculated

_I = N/Kx'

(see equations (h.9)

i
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The experimental data obtained by Schlippe and

Dietrich for the model are shown in Figures 9 and l0

together with the corresponding predictions of the summary

theory and the systematic approximations A to C2. (Also

shown are the predictions of the theory of Schlippe and

Dietrich which are discussed in a later section. ) Figure 9

presents stability boundary plots of trail against velocity

and Figure l0 presents the frequency at these stability

boundaries as a function of velocity. No theoretical curves

are shown on these Figures for approximations D1, D2 and D3

since these approximations are too crude to give any detailed

information for this problem; they either predict completely

stable or completely unstable motion for all pos%tive trails

(see Figure 8). The equations used to calculate the theoret-

ical curves in these two Figures are given in the appendix.

In these calculations, the gyroscopic torque term involving

T has been neglected since m is unknown for these data.

While a rough value of v could perhaps be estimated, such

a dubious estimate did not appea_ necessary since the term

involving v, according to any reasonable estimate of v,

would be of no importance in the velocity range of these

experimental data.

To first compare the theoretical curves in Figures9 _

. and I0, it is observed that approximation A gives a boundary .........

Approximation Bvery close to that of the summary theory.



114

A
@

_w
"_

16

12

O

v. Schlippe-Dietrich theory 7

Sunmmmy theory

Approximation A

Approximation B |

Approximations C1 and C2 j

Experimental data

g=T= 0

o o

Stability boundaries

O

0 0

0

,'/,7

-J L J 1 1 L... I

0 200 400 600 800 i000 12OO

(Unstable motion on lower right hand

side of stability boundaries)

Velocity, v, cm/sec

_ T.m.m_S9

COMPARISON OF THEORETICAL AND EXP_IMENTAL PREDICTIONS OF THE STABILITY

BOUNDARIES FOR THE TEST SY_..T_4 OF SCELIPPE AND DIETRICH



115

t

w

5_

0

0

©

,°I

12

8

I J

o 200 40o

0

0

0
0

0

v. Schlipoe-Dietrich theory

Summary theory

Approximation A

Approximation B

Approximations C1 and C2

Experimental data

I I I I

600 800 i000 1200

Velocity, v, cm/sec

FIGURE I0

COMPARISON OF THEORETICAL AND EXPERIMENTAL SHIF_4Y FREQUENCIES ON THE
STABILITY BOUNDARY FOR THE TEST SYSTEM OF SCHLIPPE AND DIETRICH

i
I

@



&

6

=B

116

does not give as close agreement but it is still fairly

good and, more importantly, for most of the trail range,

the difference between approximation B and the summary theory

is small beside the difference between the summary theory

and the experlmental data. As was previously noted, approx-

imations C1 and C2 (which are identical for the present con-

dltion of t = 0) predicts a trail-velocity stability boun-

dary which is independent of velocity so that this approxi-

mation is an inadequate repgesentation of the summary theory

at low velocities. However, at high speeds, approximations

C1 and C2 give the same stability boundary and frequency as

the higher approximations.

As a further aid in comparing the different systematio

approximations with the summary theory, Figure ll presents a

plot of the linear damping coefficient " g required to sta-

bilize the motion of the Schllppe-Dietrich model at a medium

trail of 7 cm as calculated according to the summary theory

and the various systematic approximations (the equations

used are presented in the Appendlx). This Figure confirms

the conclusions drawn from the previous Figures 9 and 10,

namely, that approximation A is a very good representation

of the summary theory and that approximation B is also a

good representation of the summary theory. However, more ....

importantly, this Figure demonstrates that approximations C1

and C2 also give a fairly good representation of the summary
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theory with respect to prediction of the maximum amount of

damping (that Is, the maximum value of g) required for sta-

bilizing the motion. Approximations D1, D2, and D3 are seen

to give inadequate representations of the summary theory.

The preceding conclusions are, of course, only proven

to be valid for the specific conditions of the Schllppe-

Dietrich model tests. However, it is believed that these

conclusions are probably valid for most practical rolling

c ondit ions.

To next consider the correlation between theory and
÷

experiment for the Schlippe-Dietrich test conditions, it is

noted that the experimental stability boundary in Figure 9

is of the same general shape as that given by the summary

theory and approxi_nations A and B, but that it lies to the

right of the theoretical curves thus indicating that the

experimental system is more stable than the theoretical

system. Similarly, the experimental frequency-velocity

curve in Figure i0 falls below the theoretical curves. These

discrepancies are perhaps a result Of the neglect of hyster-

esis damping in the calculation of the theoretical curves.

(b) Effect of _l: The next test of the summsry theory

will be made by making dse of the experimental da_a of

81 who performed a series of model tests with anMelzer,

M. Melzer, oil. cit.
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Thus the results of the preceding comparison do indicate

that there exists a range of rolling speeds in which the

kinematic equation of the summary theory, as well as of

approximations A to C2 is reasonably correct (except pos-

sibly for the as yet not evaluated and not too important

terms involving _ ).

In regard to the question as to whether these calcu-

lations hold for the entire practical range of rolling

speeds, it can be said with safety that the range of velocity

for which the theory gives good agreement with Melzer's

model data corresponds to full scale conditions somewhere

inside the practical rolling speed range and possibly

covering much of the practical range. However, the preceding

comparison definitely does not pr_e anything about the

adequacy of the summary theory for small velocities or for

the highest velocities which may be encountered in practice.

Further confirmation of the preceding conclusions are

provided by the experimental data of Schrode, 82 who per-

formed tests similar to the Just discussed tests of Melzer,

for realistic pneumatic tires as large as 39 cm (15 in.) in

diameter, as compared to the small 7 cm (3 in.) in diameter

solid rubber tire tested by Melzer, and obtained trail-

velocity stability boundary plots of the type illustrated in

H. Schrode, op. ci__!t.
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Figure 7. These stability boundary plots indicate the

j
same result as Melzer's data, namely, that there exists a

range of velocity in which the motion is stable above a cer-

tain critical trail ac and unstable below it. While it is

not possible to quantitatively check the theoretical stabil-

ity boundary equation ac = _l for Schrode's data since

Schrode provides no information suitable for accurately

evaluating _I' some qualitative confirmation may be found

since the quantity _i always appears to be of the order of

magnitude of the tire radius r and, for Schrode's data,

ac is found to be of this same order of magnitude (for

example, see Figure 7). Thus Schrode's experimental data

appear to confirm the previously drawn conclusion that there

exists a velocity range in which th_ kinematic equations of

the summary theory and approximations A to C2 are valid.

Dietz and Harling 83 have presented some similar sta-

bility boundary curves which also confirm the foregoing con-

c lus ion s.

(c) Effect of

the tilt parameter L

_: Some insight into the effect of

can be obtained by an examination of

the effects of swivel axis inclination R on the stability

boundaries according to the predictions of approximation C1

for the condition where damping, spring restoring and

O. Dietz and R. Harling, op. cit.
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gyroscopic moments are neglected (g = p = T = 0) in order

to isolate the effects of inclination. (These assumptions

appear to be Justified for the experimental conditions to

be discussed in this section.) Under these assumptions,

one theoretical stability boundary is given by the equation

ac = _i cos m + _Lh sin K
r

(7.15)

@

Experimental data suitable for testing this relation have

been obtained by Dietz and Harling 8_ for an inclination

range -20o < _ < 20 ° for one constant velocity condition.

These experimental data, some of which has to be slightly

extrapolated from Dietz and Harling's data, are shown in

Figure 12 together with the predictions of equation (7.15)

for values of _ equal to 0 and 1. While Dietz and

Harling did not supply the values of L, h and _i needed

for calculations, the assumed values indicated on the Figure

are probably accurate enough to Justify the following more

or less qualitative conclusions. (The value of _i was

chosen such as to make the calculated and experimental values

agree for the case R = 0.) It is noted that the experimen-

tal variations and the theoretical variations for _ = 0 are

in fairly good agreement and also that these two variations

Ibid.
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are more or less symmetrical with respect to positive and

negative values of R. On the other hand, the theoretical

curves for i > 0 such as the indicated curve for i = 1

will all be Unsymmetrical. Thus, it appears that i is

probably close to zero. In this connection, it might be

noted that Greidanus' theory, which is the only known theory

using a i-type term, implies a value i > 1 (compare equations

(6.5> and (6._>).

Id) Effect of cornering power N: As a rough check

on the variation of the tire cornering power N under

dynamic conditions, there are available experimental

frequency data obtained by Melzer85 in connection with his

previously mentioned tests with an uninclined (, = 0)

model landing gear equipped with a 7 cm (3 in.) An diameter

solid rubber tire. For the higher velocity conditions of

Melzer's tests, the predictions of the summary theory and

approximations A to D1 lead to the frequency equation

i

1 aN + + (7.16)
f=_w I_

@

O

for an unincllned and undamped landing gear, that Is, for

m = v = g s 0. (Inclusion of the effect of finite v into

M. Melzer, op. cir.
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this equation would not significantly alter this equation

for the test conditions to be discussed here.) Some of

Melzer's experimental data are compared with the predictions

of this equation in Table IV for the condition p = 0. The

experimental data shown represent Melzer's data for the

highest velocity condition tested. The theoretical and

experimental values shown are seen to be in fair agreement.

However, the experimental values do seem to be definitely

somewhat smaller than the corresponding theoretical values.

This discrepancy is believed to be largely due to the fact

that these experimental tests were not conducted at suffi-

ciently small values of shimmy amplitude for the assumptions

of a linearlzed theory to be valid. Specificly, all of

Melzer's frequency data were obtained for maximum swivel

angles of 5° or larger. (The data shown in Table IV cor-

respond to the condition of a 5° maximum swivel angle.)

Moreover, Melzer's data indicate that there is a fairly

definite decrease in shimmy frequency with increasing maxi-

mum swivel angle. A sample plot of Melzer's data illustrating

this effect is given in Figure 13. Also shown is the theo-

retical calculation which is valid only for zero maximum

swivel angle. It is seen that, if allowance is made for a

certain amount of experimental error, extrapolation of the

experimental data to @m = 0 could be considered to lead to

confirmation of the theory. It should be noted, however,
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TABLE IV

SHIMMY FREQUENCY TEST DATA OBTAINED

FOR THE CONDITION _ = 0

BY MELZER

Fz, kg 2.8

a/_ l 0.47 0.78

fcalculated' cps 5.8 4.5

fexper imental, cps 5.3 5.5

3.6

0.73

4.8

4.1

o.88

5.1

4.7

@
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that much of the rest of Melzer's data, while not neces-

sarily disputing this conclusion, do not so clearly support

it. Also it should be noted that plots of the type of

Figure 15 are of limited significance since each test point

shown corresponds to a different rolling velocity. In view

of these considerations, the only reasonable conclusion that

can be reached appears to be that Melzer's data roughly

confirm the theoretical frequency and do not conclusively

dispute its quantitative accuracy.

Melzer also conducted frequency tests on the same

model with an additional strong restoring spring (spring

stiffness several times the tire torsional stiffness). A

comparison of theoretical and experimental frequencies for

this test is shown in Table V. The much better agreement

obtained for this case is explaine_by the predominant influ-

ence of the spring restoring mom_htL/\s;Ince for large p the

model system approaches the condi_t_gh of a simple torsional

oscillator of moment of inertia I, and spring constant p

for which condition the well known frequency equation is

2wf = _p/I_.

In order to assess the significance of the preceding

comparisons, first consider the quantities involved in the

theoretical equation _7.16), namely, a, N, Ka, p, and I_.

The quantities a, p, and it are easily measured constants
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TABLE V

SHIMMY FREQUENCY TEST DATA 0BTAI_[ED BY MELZER

FOR THE CONDITION p _ 0

4

Fz, -kg

a/_ I

fcalculated' cps

fexperiment al, cps

3_

2.0

0.77

5.2

h.9

-_ .8" ' 5.6

o.69 o.86 o.69, o.86

5.[_ 5.7 5.5 5.8

@

Ill

I;
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and for most of Melzer's data, K a is much smaller than

aN; therefore, the preceding fair agreement between theory

and experiment indicates that the quantity N, the tire

cornering power, which was considered to be a constant in

the preceding calculatione, actually does not vary extremely

with rolling velocity and shinlny frequency, at least not for

Melzer's test conditions.

(e) Effect of gyroscopic torque: The next question

to be considered is the influence of the gyroscopic torque

resulting from tire lateral distortion. All pertinent

experimental data obtained at very hlg_h speeds (for example,

see Pigure 7) demonstrate that at sufficiently high speeds,

the previously discussed conclusion that hlgh-speed motion

is unstable for trails less than _I is no longer valid.

Instead at these very high speeds, the experimental data

show that instability at any given positive trail ceases

above a certain critical velocity. The existance of this

critical velocity will now be shown to result, at least in

part, from the gyroscopic action which was previously

included only in Kantrowltz's theory, 86 but was not mentioned

there speclficly. The simplest systematic approximation

which adequately provides for this effect is approximation

C2. In order to isolate the gyroscopic effect, consider the

86
Arthur Kantrowltz, op. cit.



special condition of no tilt (m = 0)

restoring force (p = 0) or damper

and no spring

(g = 0). For thls

134

condition the equation for the stability boundary of approx-

imation C2 (or C1) reads

(I, Vc2 + aVVc2_l)(a2N + aK a + _lvvc 2) = I,Vc2_l(aN + K a)

(7.17)

U

4

Q

where the underlined terms are the gyroscopic terms. For

the computation of the critical velocity vc this equation

may be simplified still further if it is realized that the

quantity aT_ 1 is small beside the moment of inertia I,

about the swivel axis; hence, for an approximate calculation,

avv2_l can be omitted. Then solution of equati_nthe term

(7.17) for the critical velocity v c above which the system

is stable yields the expression

_ (_i - a)(aN + Ka)Vc = _i" (7.1_)

(which is observed to give an infinite critical velocity for

zero gyroscopic action (v = 0)).

The only available experimental data containing

enough information on the necessary tire constants for

checking the validity of equation (7.18) is Melzer's data87

_7 M. Melzer, op. cit.
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and even this data does not provide the required gyroscopic

moment; therefore, it can only be crudely estimated as

follows. The mass of the tire will be of the order of mag-

nitude w I 2_(r - r_) _r42 where r is the tire overall

radius, r_ the tire torus radius and wI the average tire

density. The moment of inertia will be the mass times the

radius of gyration r squared; thus v (see equation
g

88 becomes
(3.13)), with vI = 1/2 accordlng to Kantrowltz,

T ----"

_2wlr_2(r - r_)rg 2

r(r + r 3)

4

4

For the usual tire r_ _. 0.3r, r3 is slightly smaller than

r, say r 3 r. 0.gr, and rg is probably around 0.8r. Then

to a crude approximation T = 0.21 wlr3. For Melzer's solid

rubber tire r = 3.5 cm and wI is probably around

10 -6 kg-sec2/cm _ (speciflc gravity of one), thus

T % 10 -5 kg-sec2/cm. Critical velocities calculated with

this value of T from equation (7.18) are compared in

Figure I_ with some of Melzer's experimental data for one

test condition at various values of a/_ I. The calculated

and experimental values of critical velocity are seen to be

of the same order of magnitude. Since neglect of the gyro-

scopic moment gives theoretically an infinite critical

88
Arthur Kantrowltz, op. ci___tt.
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velocity, this agreement indicates that the gyroscopic

moment is an important factor in producing stability at high

velocities. It is also of interest to note that the theo-

retical calculation is conservative, that is, the unstable

region is overestimated. In regard to quantitative agree-

ment between theory and experiment, the agreement is fair

but far from excellent. One probable reason for some of the

indicated disagreement is the relatively crude procedure

used for estimating the parameter T.

In concluding this discussion of gyroscopic torque,

it should be noted that for the case of a rigid landing

gear, the critical design condition (velocity at which

shimmy is most intense) occurs at low rolling speeds where

the gyroscopic moment is insignificant. Thus, the inclusion

of this gyroscopic moment in the theory is somewhat of

purely theoretical interest (at least for Case I) and prob-

ably could be safely omitted in practical design calculations.

Unstable shimmy conditions: As a further overall

check of the summary theory and its systematic approximations

there are available the experimental data of Kantrowitz 89

for unsteady shimmy conditions.

In the case of unsteady shimmy motion, the signifi-

cant features of the motion are the frequency and diverg_nc_ _ _

Ibid.
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of the oscillation, where the divergence and frequency are

simply the real and imaginary parts of the roots of the

characteristic algebraic equation corresponding to the

differential equation in _uestlon. Kantrowitz has made

measurements of these quantities for a _-inch diameter model

tire at inclination angles of m = 5°

sponding trails of about 0.08r and

His experimental results for a= 5°

and 20 ° with corre-

O.51r, respectively.

are presented in

Figure 15 together with corresponding theoretical calcula-

tions made according to approximation B which is the simplest

systematic approximation to the summary theory which at

least qualitatively describes the shimmy phenomena through-

out the complete range of rolling velocity. The theoretical

and experimental frequencies are seen to be in fairly good

agreement. The theoretical and experimental divergences are

in fair qualitative agreement, but quantitatively, the exper-

imental variation is sometimes considerably below the corre-

sponding theoretical one. This quantitative disagreement

may be due to several factors. First, hysteresis effects,

which may be of some importance for these data, are neglected

in the theoretical calculations. A second partial explana-

tion for the indicated disagreement arises from the fact

that the theoretical calculations may be based on insuffi-

ciently accurate values of the necessary tire parameters

since Kantrowltz did not provide direct measurements of the
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most fundamental tire parameters, such as h, a, N, Ka,

etc.; instead he measured only certain different secondary

tire parameters. Specificly Kantrowltz measured only the

quantity L, a quantity approximately equal to aN cos _ +

K a cos2x for 2 values of m, and the path frequency _l

and trail a for kinematic shimmy (shimmy with velocity

approaching zero). The basic tire parameters used for cal-

culating the theoretical curves in Figure 15 were approxl-

mately deduced from these quantities as follows. The

quantity h was obtained from equation A-1 of the Appendix

after setting v z 0 and substituting Kantrowltz's experi-

mental values of L, Wl and a for kinematic shimmy. This

procedure for determining the quantity h is, however, not

necessarily too accurate since equation A-1 neglects tire

hysteresis effects which may be important for the condition

of kinematic shln_ny. The tire deflection, needed for calcu-

lating the trail, was estimated from Figure 8 of Rotta's

paper.90 The trail was computed from the tire radius, the

tire deflection and the inclination. With the aid of this

estimated value of trail, the tire parameters N and K a ................

can be obtained from Kantrowitz's approximate expressions

for aN cos R + K a cos 2x. While the Just discussed procedure

for deducing the fundamental tire parameters for Kantrowitz's

90
J. Rotta, op. cir.
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data will probably give roughly correct values of most of

the fundamental tire constants, it is believed that the

limitations of this procedure and the neglect of the hyster-

esls effects in the theoretical calculations are sufficient

reasons to prohibit the making of any strong point out of

the discrepancies between theory and experiment in Figure 15.

Thus, to summarize, it appears that Kantrowitz's data fur-

nish only a rough overall confirmation of the summary theory

and while quantitative agreement is poorer than for most of .......

the previously discussed experimental data, this poorer

agreement is not necessarily significant.

This completes the discussion of Case I with respect

to the summary theory and its systematic approximations.

Next, attention will be directed to a discussion of Case I

with respect to the predictions of some of the previously

published theories.

Discussion of predictions of some of the _reviously

published theories.- Some interesting features of the

previously published theories in relation to Case I are as

follows.

The theory of Schllppe and Dietrichgl gives predic-

tions which are substantially the same as the predictions of

91
B. von Schlippe and R. Dietrich, Zur Mechanlk de___s

Luftrelfens, op. _clt"
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the summary theory as can be seen by a comparison of the

predictions of these two theories in Figures 9 and i0 for

Schlippe and Dietrich's model test conditions. In comparing

these two theories, it should be noted that the only differ-

ence in these two sets of theoretical curves rises from a

slight difference in the expressions used for the tire

elastic forces and moments _see Chapter III). While the

Schlippe-Dietrich theory also provides for some tire width

effects, these effects for the present test conditions are

believed to be relatively small and were not taken into

account in computing the theoretical curves in Figures 9 and

10. From these Figures, it is seen that the differences

between the stability boundaries and frequency-Curves _or

the Schlippe-Dietrich theory and the summary h_e6ry are

usually small beside the differences between the theoretical

curves and the experimental data. Thus, it seems reasonable

to conclude that there is no great significant difference

between the main features of the summary theory and the

Schlippe-Dietrich theory.

Bourcier de Carbon's advanced theory 92 provides essen-

tially the same predictions as approximation B and will thus

probably give a reasonable prediction of shimmy behavior for

the complete velocity range. Similarly, Bourcier de Carbon's

92
Christian Bourcier de Carbon, op. cit.
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elementary theory,93 corresponding to approximation C2, will

probably give reasonable predictions for the high velocity

r ange.

theory9Melzer's _ correctly predicts the existence of

the large trail stability boundary given by the equation

ac = _l but it also predicts the existence of stable motion

in the small negative trail region between zero trail and a

trail equal to -¢ - -Ka/N. This latter prediction is in

disagreement wlth the experimental data of Schllppe and

Dietrlch 95 who conducted some tests in this trail range and

found the motion there to be unstable.

The stability boundary according to Moreland's

advanced theory 96 for the case of no damping or spring

restoring forces is given by the equation

cl_Vc _ I i - 71i - V2ac/_l
(7.19)

93
Ibld.

94 M. Melzer, op. cit.

95 B. yon Schllppe and R. Dietrich, "Das Flattern
I,

eines mit Luftreifen versehenen Rades, op. cit.

96 William J. Moreland, "The Story of Shimmy," op. cit.
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This equation is plotted in Figure 16 for zero time constant

(for which case Moreland's theory reduces to the subcase of

"approximation C2 where E = K a = 0) and for several finite

values of the time constant parameter T 2. It is seen that

if the time constant parameter v 2 is large there no longer

exists a !srge trail stability boundary at the trail

ac = _l" Since the 8ctusl existence of this large trail

stability boundary has already been demonstrated in previous

parts of this paper, it appears likely that v2 cannot be

very large. On the other hand, if T2 is small, the intro-

duction o9 the time constant term is seen to produce an

almost linear decrease of critical trail with increasing

velocity until a certain limiting velocity (equal to _l/C1)

is reached; above this velocity, all-motlon is stable. Thus,

the influence of the time lag constant term is somewhat llke

that of the previously discussed gyroscopic moment due to

tire distortion which may also produce stability at high

velocities. However, in regard to the general shape of the

critical trail-veloclty curve, the variation predicted by

consideration of the gyroscopic effect (see solid llne in

Figure I_) appears more llke that of the experimental data
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(Figures 7 or l_) than does the nearly linear variation

predicted from Moreland's time lag term for small v 2.

(It should be noted, however, that this criticism of Moreland's

theory is based on the assumption that the ti_e lag constant

C 1 is a pure tire constant, independent of the landing gear

geometrical and inertia properties. If on the other hand,

Moreland considers the time lag constant to be an overall

landing gear parameter, than C 1 may be a function of trail

and the preceding discussion based on the assumption that

C 1 is constant may be invalid.)

Moreland's elementary theory,97 Temple's elementary

theory98 and Maler,s 99 and Taylor's 100 theories are too

crude to give any details for Case I.

Kantrowltz's theoryl01"Incorrectly predicts insta-

bility for all positive trails in the absence of damping or

gyroscopic moments.

97
William J. Moreland, "Landing-Gear Vibration,"

o_a.ci__At•

98 G..Temple, "Preliminary Report on the Theory of

" op. citShimmy in Aeroplane Nose Wheels and Tail Wheels,

99 E. Maier, op. cit.

100 j. Lockwood Taylor, o_. cit.

lOl Arthur Kantrowitz, oiL. cit.
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Wylie's theory I02 correctly predicts the existence

of stability at large trails; however the particular value
l

of critical trail predicted is given by the equation

ac(a c + _)N_2 z iv2L (7.20)

for m = 0. This relation implies that the critical trail

is a continuously increasing function of velocity while the

previously discussed experimental data clearly indicate that

the critical trail rapidly reaches the maximum value _l"

Case II

@

i !G

The present section of this paper is concerned with

the discussion of an idealized landing gear whose configu-

ration is shown in Figure 6. This landing gear consists of

a wheel free to swivel about an uninclined always vertical

swivel axis, this swivel axis being attached by a horizontal

linear spring, of spring constant k, to the supporting

structure. This Case II configuration is discussed here for

two reasons; first, because it gives an illustration of the

effect of structural elasticity on wheel shimmy and, second,

because it provides an opportunity better suited than Case I

for evaluating approximations D1, D2 and D3 with respect to'

102

Jean Wylie, op. ci___t.
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the application of these theories to landing gear problems

involving structural elasticity. (It may be recalled that

these three approximations were of little value in dealing

with the case of a rigid landing gear strut (Case I); how-

ever, for the present case of a flexible strut, these

approximations may sometimes be of value_ In discussing

Case II, no further mention will be made regarding the

previously published theories or of the question of agreement

between theory and experiment; all discussion will be

restricted to the summary theory and its systematic approxi-

mati ons.

The discussion of Case II proceeds as follows. First,

the equations of motion for this case are derived according

to the summary theory. As for the previous Case I, it is

more convenient to rederlve these equations of motion in a

slightly different manner rather than to apply the earlier

derived equations for the completely general case. After

making these derivations the equations for the stability

boundaries are established. Finally some curves of the

damping required to prevent shimmy, as functions of strut

stiffness and rolling velocity, are presented for a specific

sample landing gear configuration according to the predictic_s

of approximations C, DI, D2 and D3. (For the present case,

approximations CI and C2 are identical and are, for conven-

ience, henceforth referred to collectively as approximation C.)



g

These curves are utilized to obtain some insight into the

relative accuracies of the predictions of approximations

D1, D2, and D3 with res_ct to the more advanced approxi-

mation C.

J

General derivation.- The derivation of the equation

of motion for the summary theory proceeds as follows. The

details of the landing gear considered are illustrated in

Figure 6. This gear has a rigid symmetrical swiveling part

having a mass m and a moment of inertia about its center

of gravity IO. The nonswiveling part of the landing gear

consists of a spring of stiffness k with an attached mass

m 1. The lateral displacement of the swivel axis is desig-

nated as Ha.

Setting the sum of the lateral spring and inertia

forces acting on the swiveling part equal to the inertia
w

reaction of its center of gravity mDt2(_a - c29) yields

the relation

K_ 0 - k_a - mlDt2_a = mDt2_a - mc2Dt2@ (7.21)

and substitution for _0 from the relation

R0 = Y0 - _0 z Y0 " Ha + a@ (7.22)



(see Figure 6) yields after rearrangement

z50

2 +
K_y 0 - (tolDt mDt 2 + Kk + k)11a + (mc2Dt 2 + aKk)@ = 0

(7.23)

|
!

!
|
!

!

!
!

_1

Setting the sum of the moments about the center of

gravity of the swiveling part equal to the inertia reaction

yields the result

Kaa - Kkk0c I - k?laC 2 - mlDt2_laC2

vvDtk 0 = IoDt2@

- gDt@ - pg -

{7.22}

(see Figure 6) where I0 represents the moment of inertia

of the swiveling structure at its center of gravity

(I 0 = I_ - mc22). Substitution for a and k 0 according

to equations (3.2) and (7.22) then, after rearrangement,

yields the result

(TvD t -KaV'IDt + KkCl)Y 0 + (mlC2Dt 2 - TvD t + kc 2

(10Dt 2 + gD t + vavD t + p + K a + aClK_)@ = 0

- KACl)_a +

(7.25)

2_a. _. -- m

The third equation for this system for the general

case is given by the kinematic relation of equation (2.20)_--

This relation, after omitting I", replacing space derivatives

by time derivatives and setting _0 = ?la - ag, reads
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9

or

-(I + _iv-IDt + _2v'2Dt 2 + . . ")Y0 + (_i " a)@ + _a = 0

. (7 .26a )

)ehV-IDty 0-(i + Lv-ID t + (_i " a)@ + _a = 0 (7.26b)

i

| _

The three equations (7.25), (7.25 ) and (7.26) com-

pletely describe the motion of the landing gear according to

the general theory in terms of the three variables Y0' _a

and @. The corresponding equations for the systematic

approximations can be easily obtained in a similar manner.

Stability boundaries.- The stability boundaries for

Case II are obtained in the same manner as was indicated in

the discussion of Case I. For the summary theory, they are

obtained as follows.

Purely oscillatory boundaries: The equations for the

purely oscillatory motion boundaries are obtained by substi-

tuting into the differential equations the expressions

9 = 9m e

_a = _am e

Y0 - Y0m e

t"

i(Wt+°l) = T1amei_t(cos aI + i sin aI)

l(wt÷s2) = Yomei_t{cos a2 + i sin a2)

k.

(7.27)
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Substitution of these relations into equations (7.23), (7.25)

and (7.26b), differentiation and cancellation of e iwt and

separation of real and imaginary parts into separate equa-

tions yields the expressions

K_(Y0m cos a 2) + (mlw2 + mY2 - K_ - k)(Vlam cos @_1) +

(aK_ - mc2w2)@m -- 0

K_(Y0m sin a 2) + (ml1_2 + my 2 - K_

(7.28)

- k)(_a m sin •1 ) = 0

(7.29)

from equation (7.23),

ClKA(Y0m cos a2) - (vvw - Kav'l_)(Y0m sin a2) +

(-talC2 w2 + c2k -ClKA)(_a m cos aI) + vv_(_a m sin .i ) +

(-Io_ + p + Ka + aClK_)@ m = 0 (7.30)

ClKA(Y0m sin g2 ) + (vvw- Kav-lw)(Y0m cos a2) +

(-mc2 _2 + kc 2 - KACl)(_la m sin eI ) - _v1_(_lam cos ol) +

(g_ + _av_)@ m = 0 (7.31)

from equation (7.25) , and
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-pl,(YOm cos 92 ) + p2m(YOm sin 92 ) + (_i " a)@m +

(_am cos •1) = 0

-p2 (yore cos 92 ) - pl.(Y0m sin 92 ) + _lam sin _ = 0

(7.33)

II

from equation (7.26b). Equations (7.28) to (7.33) can be

considered as six linear simultaneous algebraic equations

with no constant terms in the five variables Yom cos o2,

Y0m sin 92, _am cos el, _am sin 91 and gin" Then for this

system of equations to have solutions other than zero, it is

necessary that the determinant of the coefficients of any

group of five of these six equations should equal zero. The

determinant for equations (7.28), (7.29), (7.31), (7.32) and

(7.33) reads

l
J

!
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Equation (7.3_) gives the frequency for purely oscillatory

motion as a function of the landing gear properties and

equation (7.35) gives the amount of damping required for

this purely osc111atory motion as m function of the frequency

and the landing gear properties. The corresponding equations

for the systematic approximations can be obtained either by

following through a similar derivation for each approximation

or, in some cases, by applying appropriate simplifications

to equations (7.32) and (7.35). For example, to obtain the

boundary equations for approximation B, whose basic equation

is _n = 0 for n _ 2, Pl- and P2m in equations (7.52)

and (7.35) may be replaced by their respective series

expansion expressions according to equation (5.2a) and then

the appropriate higher order terms in the two series may be

omitted.

Purely uniform motion: For purely uniform motion,

all variables will have constant values which may be repre-

sented as

=

| _

l

@ = @m

_a = Ham

Y0 = Y0m



Q Substitution of these relations into equations (7.23),

(7.25) and (7.26) yields the results

aK_gm - (K_+ k)_lam + K_Y0m = 0

156

(p + Ka + aClK_)g m + (c2k - ClK_)_a m + ClK_Y0m = 0

(_i " a)gm + _am " Y0m z 0

6

For nonzero solutions of these three equations, the deter-

minant of the coefficients of gin' tlam and Y0m must be

zero. Evaluation of this determinant gives simply

a + c + p/'N = 0 (7.36)

Evaluation of approximations Dl, D2 and D3.- In the

earlier discussion of Case I, it was not possible to present

a fair relative evaluation of the three parallel approximate

theories D1, D2 and D_ since for Case I, none of these

theories provides any realistic information. However, for

the present case II, such a comparison can be made between

the predictions of these three approximations and the more

accurate approximation C, and a specific example is discussed

here for a sample landing gear configuration having the
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relative dimensions and properties: L = 0.St, h = a = 0.5 r,

c I = c2 - 0.25r, c m 0.3r, ml = 0.35m, i0 = mr2 and

v = p z 0. The actual calculated behavior of this landing

gear in terms of damping required for stability as a function

of rolling velocity according to approximation C is shown

in Figure 17 for four values of the ratio of strut stiffness

to tire stiffness k/Kk. It is seen from this Figure that

as the stiffness of the strut is decreased from infinity,

the damping requirement is increased. Also for large strut

stiffness, the region of maximur_damplng required lies at

low speeds while for small strut stiffness, it lles at higher

speeds.

The theoretic predictions of the three theories D1,

D2 and D3 for this sample landing gear are compared with

the corresponding predictions of the more accurate approxi-

mation C (from Figure 17) in Figure 18 for three values of

strut stiffness, k = 0.2Kk, 1.0K_, and 5.0Kk. It is seen

that for each strut stiffness, approximations D2 and D3

provide a considerable overestimate of the damping required

for stability. On the other hand, approximation D1 gives

results in good agreement with those of approximation C for

the ratios k/K_ = 0.2 and 1.0 but this approximation

greatly underestimates the damping for the large value of

strut stiffness k/K_ = 5.0.
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In view of these comparisons, it appears that approxi-

mations D2 and D3 will not, in general, give reliable

quantitative estimates of the damping required for stability.

For approximation D1, it appears that this theory may give

reasonable results for some cases where the lateral stiff-

ness of the strut does not greatly exceed the lateral stiff-

ness of the tire. This latter conclusion is, of course,

not necessarily a general conclusion since it is based on

only one set of landing gear parameters. To determine the

degree to which it is valid in general would require a more

extensive investigation for a range of landing gear proper-

ties.
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CHAPTER VIII

SUMMARY

Over the past 2 5 years, a large number of at least

slightly different theories of tire motion and wheel shin_my

have been developed but there has not been much effort

directed to the reconciliation of these different theories.

The present paper provides this needed correlation by

demonstrating that too°st of the existing theories represent

varying degrees of approximation to a general summary theory

developed herei6_w_ich is a minor modification of the basic

theory of Schlippe and Dietrich. In most cases where strong

differences exist between the existing theories and the

summary theory, the existing theories are shown to be of

inferior merit.

A series of systematic approximations to the summary

theory is developed for the treatment of problems too simple

to require the complexity of the complete summary theory.

Comparisons of the existing experimental data with

the predictions of the summary and systematic approximation

theories provide a fair substantiation of the higher

approximate theories. However, some discrepancies do exist

which may be due to tire hysteresis effects or other unknown

influences. Further work may be required to resolve these

discrepancies
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APPENDIX ,:

STABILITY BOUNDARIES FOR CASE I

167

The following equations describe the conditions for

which purely oscillatory motion is possible for Case I for

the summary theory and the systematic approximations.

For the summary theory and approximations A to C2

v2 . (a2Kk + K a cos2N + p + p.)(pl 2 + p2 2)- ÷

l,m12(p12 + p2 2) - T_iP2(O_ I cos N - a)cos m

(aKk + ckF z sin R)pl - wlP2K a cos xl(a_ I cos _ - a)
,J

I,_12(p12 + p2 2) -I"_1P2(_7,1 cos • - a)cos K

(A-l)

and

(e_l cos ,t - a) r

g = _2(aK + cRF z sin N) +
DlV(pl2"+ p2 2)

WlPl(K a cos _ - vv2cos IS - a_v cos m
(A-2)

where for the summary theory

Pl = PI_-- cos D1 h - LD I sin _Ih

P2 = P2- = sin DI h + LD I cos DIh



for approximation A

168

0

2
Pl = i - _2DI

P2 = _IDI " _3DI 5

for approximation B

Pl = I - _2_I 2

P2 = _IDI

=
and for approximations CI and C2

PI=I

,m

P2 - _IDI

For approximations DI and D3, purely oscillatory

motion does not exist.

For approximation D2

.o2 = (a2KR + acKR cos m + p + PK + vv2c°s2m)/l,

|



g

g = vII_(aKR.... cos _ + eKR c6s2N + ecRF z sin N cos N)

L a2K_ + aeKR cos N + p + PR + vv2 c°s2m

aT cos RJ
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The stability boundaries for uniform motion are

obtained by setting the coefficient of the Y0 terms in the

various differential equations equal to zero. For example,

for the summ_ry theory and approximations A and B, the

equation

aaN cos K + K c°s2K + P + PR + u R = 0

describes this stability boundary.


